算法 (六) : 二分查找

原理:
将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后;将要查找的值和数组的中值进行比较,若小于中值则在中值前 面找,若大于中值则在中值后面找,等于中值时直接返回。然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分。
 
优点:
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好,占用系统内存较少;
 
缺点:
是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
 
中文名:
二分查找
提出时间:
1946
别称:折半查找优点:查找速度快
提出者:
John Mauchly
缺点:
待查表为有序表
 

算法要求

1.必须采用顺序存储结构。
2.必须按关键字大小有序排列。
 

算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.
时间复杂度无非就是while循环的次数!
 
总共有n个元素,
 
渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数
 
由于你n/2^k取整后>=1
 
即令n/2^k=1
 
可得k=log2n,(是以2为底,n的对数)
 
所以时间复杂度可以表示O(h)=O(log2n)
 
下面提供一段二分查找实现的伪代码:
 
BinarySearch(max,min,des)
 
mid-<(max+min)/2
 
while(min<=max)
 
mid=(min+max)/2
 
if mid=des then
 
return mid
 
elseif mid >des then
 
max=mid-1
 
else
 
min=mid+1
 
return max
 
折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。如 果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。如果x>a[n/2],则我们只要在数组a的右 半部继续搜索x。
 

代码示例

 

Swift源代码

 

 

 
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值