三国志
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
《三国志》是一款很经典的经营策略类游戏。我们的小白同学是这款游戏的忠实玩家。现在他把游戏简化一下,地图上只有他一方势力,现在他只有一个城池,而他周边有一些无人占的空城,但是这些空城中有很多不同数量的同种财宝。我们的小白同学虎视眈眈的看着这些城池中的财宝。
按照游戏的规则,他只要指派一名武将攻占这座城池,里面的财宝就归他所有了。不过一量攻占这座城池,我们的武将就要留守,不能撤回。因为我们的小白手下有无数的武将,所以他不在乎这些。
从小白的城池派出的武将,每走一公理的距离就要消耗一石的粮食,而他手上的粮食是有限的。现在小白统计出了地图上城池间的道路,这些道路都是双向的,他想请你帮忙计算出他能得到 的最多的财宝数量。我们用城池的编号代表城池,规定小白所在的城池为0号城池,其他的城池从1号开始计数。
-
输入
-
本题包含多组数据:
首先,是一个整数T(1<=T<=20),代表数据的组数
然后,下面是T组测试数据。对于每组数据包含三行:
第一行:三个数字S,N,M
(1<=S<=1000000,1<=N<=100,1<=M<=10000)
S代表他手中的粮食(石),N代表城池个数,M代表道路条数。
第二行:包含M个三元组行 Ai,Bi,Ci(1<=A,B<=N,1<=C<=100)。
代表Ai,Bi两城池间的道路长度为Ci(公里)。
第三行:包含N个元素,Vi代表第i个城池中的财宝数量。(1<=V<=100)
输出
- 每组输出各占一行,输出仅一个整数,表示小白能得到的最大财富值。 样例输入
-
2 10 1 1 0 1 3 2 5 2 3 0 1 2 0 2 4 1 2 1 2 3
样例输出
-
2 5
-
每个人占领城市之后, 就相当于, 要再重新派兵占领城市, 所以求出单源最短路径, 然后, 再通过01背包的思想判断选或者不选
-
代码:
-
#include<iostream> using namespace std; #include<stdio.h> #include<string.h> #include<vector> typedef struct{ int v;//城市编号 int w;//城市价值 }node; int dist[110], intree[110], value[110];//value表示背包价值 vector<node> g[110]; int n, s, m; int dp[1000005];//再i容量下可以存放的最大价值 void dij(){//求0源最短路 int i, j; int w, weight, len, min_dist; int v = 0; dist[v] = 0; while(intree[v] == 0){ intree[v] = 1; len = g[v].size(); for(i = 0; i < len; i++){ w = g[v][i].v; weight = g[v][i].w; if(intree[w] == 0 && dist[v] + weight < dist[w]){//更改邻接边 dist[w] = dist[v] + weight; } } v = 1; min_dist = 100000000; for(i = 1; i <= n; i++){ if(intree[i] == 0 && dist[i] < min_dist){ min_dist = dist[i]; v = i; } } } } void read(){ node e; int a, b, c; scanf("%d%d%d", &s, &n, &m); while(m--){ scanf("%d%d%d", &a, &b, &c); e.v = b; e.w = c; g[a].push_back(e); e.v = a; e.w = c; g[b].push_back(e); } for(int i = 1; i <= n; i++){ scanf("%d", &value[i]); } } int main(){ // freopen("in.txt", "r", stdin); int t; int i, j; scanf("%d", &t); while(t--){ for(i = 0; i < 110; i++) dist[i] = 100000000;//值尽量开大 memset(intree, 0, sizeof(intree)); memset(dp, 0, sizeof(dp)); for(i = 0; i < 110; i++){ g[i].clear(); } read(); dij(); for(i = 1; i <= n; i++){//01背包求j容积下的最大值 for(j = s; j >= 0; j--){ if(j >= dist[i]){ if(dp[j] < dp[j - dist[i]] + value[i]) dp[j] = dp[j - dist[i]] + value[i]; } } } printf("%d\n", dp[s]); } return 0; }
-
本题包含多组数据: