先吐槽一下,这名字起的,不大明白有何意义。
这篇文章设计了一个股票预测模型(一般情况下,直接预测股价的,基本属于没啥意义)
模型大概是这样:
首先,利用公募基金公布的持仓信息,用矩阵分解的办法训练出基金管理人和每只股票的特征向量。(个人觉得这是这篇文章唯一有用的地方-利用了公募基金信息)
这些股票的特征向量是静态信息,对应着图中上面部分,模型想要综合考虑静态信息(股票的特征向量)和动态信息(历史一段时间内的股票情况),简单的concat操作不好,因为静态和动态不兼容,所以本文对静态特征做了一些处理(图中上半部分)。
静态部分的输入,从原始的股票特征向量,换成了该股票特征向量和市场特征向量的correlation,市场特征向量用rank前几的股票的特征向量平均得出。
将correlation和动态特征concat输入nn,预测股价。