当n取正整数时,函数 y=1/sin(n) 有界吗?

        当n\in N^{+}时,函数 y=\frac{1}{\sin n} 是有界的吗?

        乍看上去,似乎很容易得出无界的结论。事实上,当n取长度不小于π的实数区间的时候,我们知道它的奇点为π的整数倍。但现在我们将定义域限定在全体正整数范围上。

        众所周知,任何整数都不是π的倍数。因此,\forall n\in N^{+}, \sin \left ( n \right )\neq 0 是成立的。

        那么,\sin n 会无限接近于0吗?

        这个问题我们用另一种方式描述:对于任意给定的正整数N_{1},是否恒存在一不同的正整数N_{2},使得\left | \sin \left ( N_{2} \right ) \right |<\left | \sin \left ( N_{1} \right ) \right |  ?       

当N1取3(sin3相对来说比较接近于0了)时,可以找到N2=44,使得|sinN2|<|sinN1|
当N1取3(sin3相对来说比较接近于0了)时,可以找到N2=44,使得|sinN2|<|sinN1|

         

         即,对于任意小的正实数ε,总有\left | sin\left ( n \right ) \right |< \varepsilon

        当\varepsilon \rightarrow 0时,为便于表述,我们将n换为另一变量n_{p},即\left | sin\left ( n_{p} \right ) \right |\rightarrow 0,则我们能够得到:

n_{p}\rightarrow k\pi,k为某个整数。

        这里p的意义可以理解为:从n取某一个数N_{1}开始,第p个使\left | sin\left ( n_{p} \right ) \right |递减的序数。例如从3开始:

pNpy=sin(Np)
130.141120008
222-0.008851309
3333-0.008821166
4355-3.01E-05
5103993-1.91E-05
6104348-1.10E-05
72083418.11E-06
83126892.90E-06
98337192.31E-06

        当p\rightarrow \infty时,\left | sin\left ( n_{p} \right ) \right |\rightarrow 0。那么n_{p}\rightarrow k\pi。则,有:

\lim_{p\rightarrow \infty }\frac{n_{p}}{k}=\pi

        这其实就涉及了割圆术的问题。早已证明了\pi可以由有理数无限接近。因此上式是成立的。


        下面我们从另一个命题来进行讨论:

        任意一个实数都可以由有理数无限逼近。

        对于任意实数A,任取有理数Q_{1} ,则我们总能找到一个足够大的q,使得

\frac{1}{q}<\left | A-Q_{1} \right |

        从而得证上述结论。

        由这个结论,就能直接说明\pi也是可以由有理数无限逼近的。

        

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值