当时,函数
是有界的吗?
乍看上去,似乎很容易得出无界的结论。事实上,当n取长度不小于π的实数区间的时候,我们知道它的奇点为π的整数倍。但现在我们将定义域限定在全体正整数范围上。
众所周知,任何整数都不是π的倍数。因此, 是成立的。
那么, 会无限接近于0吗?
这个问题我们用另一种方式描述:对于任意给定的正整数,是否恒存在一不同的正整数
,使得
?

即,对于任意小的正实数ε,总有?
当时,为便于表述,我们将n换为另一变量
,即
,则我们能够得到:
,k为某个整数。
这里p的意义可以理解为:从n取某一个数开始,第p个使
递减的序数。例如从3开始:
p | Np | y=sin(Np) |
1 | 3 | 0.141120008 |
2 | 22 | -0.008851309 |
3 | 333 | -0.008821166 |
4 | 355 | -3.01E-05 |
5 | 103993 | -1.91E-05 |
6 | 104348 | -1.10E-05 |
7 | 208341 | 8.11E-06 |
8 | 312689 | 2.90E-06 |
9 | 833719 | 2.31E-06 |
当时,
。那么
。则,有:
这其实就涉及了割圆术的问题。早已证明了可以由有理数无限接近。因此上式是成立的。
下面我们从另一个命题来进行讨论:
任意一个实数都可以由有理数无限逼近。
对于任意实数A,任取有理数 ,则我们总能找到一个足够大的q,使得
从而得证上述结论。
由这个结论,就能直接说明也是可以由有理数无限逼近的。