基础练习 杨辉三角形
时间限制:1.0s 内存限制:256.0MB
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
思路:
由图可得:(1)第一列及对角线上的值都为1
(2)除第一列及对角线,其余的值为该位置上面的值及左上方的值之和
程序如下:
#include <iostream>
using namespace std;
int main()
{
unsigned int n;
cin>>n;
unsigned int array[n][n];//建立n*n的矩阵
for(unsigned int i=0;i<n;i++)//i为行
{
for(unsigned int j=0;j<=i;j++)//j为列
{
if(j==0)//将第一列的值赋为1
{
array[i][j]=1;
}
else if(j==i)//将对角线上的值赋为1
{
array[i][j]=1;
}
else
{
array[i][j]=array[i-1][j]+array[i-1][j-1];//值为该位置上面的值和左上方的值之和
}
cout<<array[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
下面程序是别人写的,很巧妙
#include <iostream>
using namespace std;
int main()
{
int n, arr[35] = {0};
scanf("%d", &n);
for(int i = 1; i <= n; i++)
{
arr[1] = arr[i] = 1;//每一列与每一行值赋为1
for(int j = i - 1; j > 1; j--)
{
arr[j] += arr[j - 1];//下一行该位置的值等于该位置的值加上该位置前面的值
}
for(int j = 1; j <= i; j++)
printf("%d ", arr[j]);
printf("\n");
}
return 0;
}