n/2^n的前n项和,Sn=∑n/2^n

求数列\frac{n}{2^n}的前n项和

S_{n}=\frac{1}{2^1}+\frac{2}{2^2}+...+\frac{n}{2^n}   ①

\frac{1}{2}S_{n}=\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{n}{2^{n+1}}    ②

①-②:

\frac{1}{2}S_{n}=\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{n}}-\frac{n}{2^{n+1}}=\sum_{1}^{n}\frac{1}{2^n}-\frac{n}{2^{n+1}}=1-\frac{1}{2^n}-\frac{n}{2^{n+1}}

S_{n}=2-\frac{n+2}{2^n}

  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值