推荐一款免费好用的「AI 知识库」工具,可进行RAG问答、文档分析、总结摘要等,自动进行chunk拆分与向量化

  • 还在找AI知识库工具么? 
  • 还在为自己搭建AI知识库而苦恼么
  • 还在为文档分析、总结而烦躁么? 
  • 还在为不同诉求而注册、充值不同AI软件而苦恼么?

领航AGI聚合平台解决你所有困扰!

今天主要讲如何在领航AGI上免费使用AI知识库、文档分析、总结摘要功能

1、注册登录,或进入控制台

     传送门:https://javastarboy.com/

2、AI工具集导航:领航AGI工具集 | 全球AI工具网址导航

图片

2、点击 playground 选择第三款AI工具,典藏款 LobeChat,立即开始

图片

3、点击左上角头像,注册\登录, 这里做二次登录目的是,数据分离,以保证大家的数据隐私以及数据持久化(记忆)

图片

4、文件上传两个入口,一个是对话框上面的一排按钮,另一个是头像下方第二个文件夹按钮

图片

图片

5、分块检查(向量化过程,对话框上传的会自动分块, 文件处上传的需要手动点击一下)

图片

图片

6、对话框添加知识库

图片

图片

7、对话中引用知识库

图片

图片

就问你,帅不帅,快去体验一下吧~

视频版教程

推荐一款免费好用的「AI 知识库」工具,可进行RAG问答、文档分析、总结摘要等,自动进行chunk拆分与向量化

领航AGI工具集 | 全球AI工具网址导航

### 构建RAG知识库的核心流程 构建RAG(检索增强生成)知识库通常涉及以下几个核心部分:文档加载、向量存储、相似度计算以及模型推理。以下是基于Python的一个简化版RAG系统的实现示例,该示例结合了LangChain框架来完成主要功能。 #### 使用LangChain搭建RAG系统 以下是一个简单的代码示例,展示了如何利用LangChain快速创建一个基础的RAG系统[^2]: ```python from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders import DirectoryLoader, TextLoader # 加载本地文件作为知识源 loader = DirectoryLoader("./data", glob="*.txt", loader_cls=TextLoader) documents = loader.load() # 将大段文本分割成较小的部分以便处理 text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # 初始化嵌入模型并建立向量数据库 embeddings = OpenAIEmbeddings() db = FAISS.from_documents(texts, embeddings) # 定义问答链路 llm = OpenAI(temperature=0) qa_chain = load_qa_chain(llm, chain_type="stuff") def run_query(query): docs = db.similarity_search(query) # 向量搜索最相关的文档片段 result = qa_chain.run(input_documents=docs, question=query) # 基于LLM生成最终答案 return result # 测试查询 query = "什么是RAG?" response = run_query(query) print(response) ``` 上述代码实现了从加载文档到执行具体查询的过程。其中`DirectoryLoader`负责读取指定目录下的所有`.txt`文件;`RecursiveCharacterTextSplitter`则用来将这些长篇幅的内容拆分成适合后续操作的小块;接着通过OpenAI提供的嵌入服务把每一段文字转化为高维空间中的表示形式,并存放到FAISS这种高效的近似最近邻算法支持的数据结构里待查用。最后当用户输入一个问题时,程序会先找到其最为匹配的知识条目再交由大型预训练语言模型给出精确回复。 #### 创建新知识库的具体步骤说明 如果按照另一份资料介绍的方式来进行,则需遵循如下指示去新建属于自己的工作区对应的知识库实例[^1]: - 登录至目标平台的工作区域; - 寻找页面上的“知识库”选项卡; - 找到位于顶部右侧位置带有加号标记按钮的位置点击它即可启动新增流程。 以上便是有关借助编程手段打造具备检索强化特性的知识管理系统的大致方法论概述及相关实践案例分享。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AGI舰长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值