自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI全栈 和 IT 编程相关分享

8年北漂程序员,专注于 AI2.0 和 IT 编程(java、python相关)、AGI大模型全栈的技术分享

  • 博客(179)
  • 资源 (4)
  • 收藏
  • 关注

原创 我的国家级工信部认证 AIGC 证书(导师级)到手啦~

2024 年的知识库质量更是突飞猛进,现在也已更新到 24 万字,在互联网也是数一数二的。国家工信部认证的 AIGC 导师级证书。(重点是裸考的哦,这就是实力)大家都知道,我是国内最早期的 AI2.0 博主之一,2023 年。但是,这些都没有国家认证,于是今年 7 月 6 号,我又考取了。虽然我有这么多能力,我也没有放松下来,与此同时。自费几万元加入了各种AI付费社群学习、交流。AI 知识库分享干货就高达 50 万字。在这里分享一下喜悦,我们一起加油吧~

2024-07-23 11:07:28 8810 11

原创 大模型训练及推理【硬件选型指南】及 GPU 通识

图形处理单元(GPU)是一种功能强大的电子芯片,用于在沉浸式视频游戏、电影和其他视觉媒体中呈现丰富的 2D/3D 图形和动画因其超越 CPU 的并行矩阵运算性能,所以也被广泛应用于人工智能相关的各种系统,包括机器视觉、NLP、语音识别、自动驾驶等。

2024-04-22 15:26:14 24070 5

原创 Jupyter 大模型算法必备!

Jupyter项目包含三大核心工具:Jupyter Notebook提供轻量级的交互式笔记本环境;JupyterLab是新一代模块化开发界面,支持多文档和扩展功能;JupyterHub是多用户服务器方案,支持团队协作。三者均可通过pip安装,其中JupyterHub还支持Kubernetes部署(Littlest JupyterHub适合小型团队)。主要区别在于:Notebook侧重简洁,Lab提供高级功能,Hub实现多用户管理。这些工具广泛应用于数据分析、教学和AI开发领域,支持代码、可视化与文本的交互式

2025-12-24 08:42:42 610

原创 谷歌TableRAG vs 华为TableRAG:同名技术背后,AI处理表格数据的两种颠覆性思路

摘要:本文对比了谷歌和华为两种TableRAG解决方案。谷歌方案针对海量表格数据,采用"精准检索"策略,通过Schema和单元格检索结合程序求解实现高效查询;华为方案则面向文本表格混合的异构文档,运用SQL驱动和迭代推理处理复杂多跳问题。两种方案都体现了RAG范式演进方向:让AI成为"工具使用者",通过精准检索关键信息而非全文灌输,结合专业工具(SQL/Python)处理结构化数据。这标志着AI正从"万事通"向"善用工具的智能代理&quo

2025-12-24 08:37:36 1072

原创 Sublim text 快捷键 MAC

Sublime Text常用快捷键汇总:文件操作(Cmd+N/O/S等)、编辑功能(撤销/复制/注释等)、导航(跳转行号/查找符号)、多光标编辑(添加多行光标/同时编辑多行)。包含查找替换、代码格式化、大小写转换等实用功能,适用于Mac系统的高效代码编辑。

2025-12-09 09:06:18 407

原创 IT 岗位常用术语解释表40+(含义、作用、举例)汇总

《互联网职场必备术语手册》摘要 工作中常遇到专业术语听不懂的尴尬?产品经理说的CR、工程师提的TPS、业务方问的DAU,这些互联网行业高频术语已成为跨岗位沟通的"通用语"。本文整理了一份涵盖技术指标(如QPS、SLA)、业务概念(如B2B2C、私域流量)、工作方法(如A/B测试、OKR)等领域的术语手册,帮助产品、运营、技术等岗位人员快速掌握专业词汇,提升会议沟通效率、数据分析能力和跨团队协作水平。手册内容支持文字版获取,助力职场人告别术语困惑,实现高效工作。

2025-12-09 09:03:43 421

原创 基于Dify+Ollama+Xinference构建企业级私有化RAG与Agent大模型应用实操(下)

基于 Dify 实现 RAG、Agent “大模型应用落地”是目前企业落地 AI 场景最简单也是必须的路径,我将分两篇文章,从“原理->Dify 部署->模型私有化部署->Agent 搭建案例”完整演示一下实操过程。

2025-12-06 09:30:21 1108

原创 基于Dify+Ollama+Xinference构建企业级私有化RAG与Agent大模型应用实操(上)

基于 Dify 实现 RAG、Agent “大模型应用落地”是目前企业落地 AI 场景最简单也是必须的路径,我将分两篇文章,从“原理->Dify 部署->模型私有化部署->Agent 搭建案例”完整演示一下实操过程。

2025-12-06 09:00:28 1063

原创 logits 与 softmax

摘要:Logits是深度学习模型输出的原始分数,相比直接输出概率具有两大优势:1)数值稳定性,避免概率接近零时的计算问题;2)提供更丰富的梯度信号。在大语言模型生成文本时,Logits先为每个候选词计算分数,再通过Softmax转换为概率分布进行抽样。Logits作为"原始想法"(任意实数),经Softmax转化为概率(0-1区间),前者用于稳定训练,后者作为最终输出。这种设计平衡了数值计算和模型表达能力的需求。

2025-11-23 13:21:14 593

原创 mac MPS 下 fp16 混合精度训练引发的问题,太坑了!

【摘要】作者在训练NER实体标注模型时遇到loss快速过拟合、F1值无变化的问题,经排查发现是Mac M1芯片的MPS架构对fp16支持不足导致。MPS的半精度实现不成熟,缺乏有效梯度缩放机制,导致数值不稳定。解决方案包括:1)禁用fp16改用float32训练;2)尝试bf16(需PyTorch≥2.1);3)调整学习率和批次大小。修改后模型恢复正常训练,loss和F1值均有改善。文章提醒开发者注意硬件架构对混合精度训练的影响,并分享了调试经验。(149字)

2025-11-23 13:20:17 551

原创 命名实体识别(NER)与BIO标注指南

命名实体识别(NER)是自然语言处理的核心任务,用于识别文本中的人名、地名等特定实体。BIO标注方案是NER的主流方法,将实体标注为B(开始)、I(内部)、O(非实体)三类,还可扩展为更精确的BIOES方案。NER技术经历了从规则方法、统计学习到深度学习的演进,当前BiLSTM-CRF和BERT等模型表现优异。作为信息抽取的基础,NER在问答系统、知识图谱等应用中至关重要,但低资源场景和领域适应仍是挑战。理解这些概念对算法工程师构建高效NER系统具有重要意义。

2025-11-22 08:00:00 560

原创 Neo4j 图数据库(Graph Database),“大模型 + 知识图谱” 的前奏!

本文全面介绍了Neo4j图数据库的使用方法,主要包括以下内容:1. 图数据库基础概念:解释了节点、关系和路径等核心元素,以及与关系型数据库的区别。2. 安装部署指南:详细说明了Windows系统下的JDK配置、Neo4j安装和环境变量设置,以及Docker容器化部署方案。3. Cypher查询语言:系统讲解了数据CRUD操作、数据类型、常用函数和高级查询技巧,包括模式匹配、过滤、排序、分页和聚合等。4. 数据约束管理:重点介绍了属性唯一性约束的创建和应用。5. 编程接口:提供了Python和Java连接Ne

2025-11-22 07:30:00 1288

原创 为什么要学习 AI?

AI的发展触及了社会生活的方方面面,从智能家居设备到先进的医疗诊断工具,从个性化学习平台到自动化的供应链管理系统,AI的应用正在重塑我们的工作、学习和生活方式。此外,AI的战略重要性也在于其对数据的高效利用能力,使企业能够在复杂的市场环境中做出更快、更精准的决策。在国内随着对AI技术的重视和投资,AI教育的重要性日益凸显,为AI学习者提供了广阔的发展空间和机会。AI的这些现实和未来影响凸显了学习和掌握这一技术的重要性,不仅因为它带来的职业机会,而且因为它在塑造一个更智能、更高效的未来中扮演的关键角色。

2025-11-21 08:06:42 1190

原创 Langchain 1.0 快速入门

LangChain 1.0是一个重大更新版本,标志着框架进入成熟阶段。该版本通过统一API标准(如create_agent()接口)、与LangGraph深度整合,以及引入Middleware机制和结构化输出功能,显著简化了开发流程并提升了生产环境稳定性。主要改进包括:智能体创建标准化、敏感信息检测与处理、上下文自动管理、工具调用失败重试等功能。新版承诺在2.0版本前不再进行重大调整,建议开发者尽快迁移至1.0版本。

2025-11-20 18:33:12 719

原创 Langchain 快速入门

【摘要】LangChain是哈佛大学Harrison Chase于2022年推出的开源框架,旨在简化基于大语言模型的AI应用开发。本文系统介绍了其核心架构和实战应用: 框架解析 六大核心组件:模型I/O、数据连接、记忆系统、架构封装(Chain/Agent)、回调机制 特色功能:模型集成、工具连接、记忆存储、模块化设计 配套工具:LangServe(API部署)、LangSmith(调试监控) 关键技术 文档处理:支持PDF等格式加载,提供文本分割/嵌入/检索全流程工具 智能代理:支持7种Agent类型,实

2025-11-18 08:00:00 2013

原创 大模型训练必备:深入理解PyTorch自动混合精度核心机制与最佳实践,告别显存不足

自动混合精度(AMP)技术通过智能切换FP32和FP16精度,显著提升深度学习训练效率。本文详解AMP核心原理:权重备份防止梯度消失、损失缩放避免数值下溢、精度累加减小计算误差。PyTorch实现部分介绍了autocast上下文管理器和GradScaler的使用方法,并提供了完整训练示例。文章还涵盖AMP高级应用,包括梯度累积、多模型训练、自定义函数兼容性等实用技巧,以及性能优化和调试策略,帮助开发者充分利用AMP技术提升训练速度并降低显存占用。

2025-11-18 07:00:00 811

原创 AIGC 相关概念解读

本文系统介绍了大模型的核心概念与技术体系,包括模型架构(权重与参数机制)、训练方法(预训练与微调)、推理部署、涌现能力等基础原理。重点剖析了生成式AI的工作机制,涵盖Token处理、Prompt工程、输出控制等技术细节,并探讨了幻觉问题及RAG等解决方案。同时介绍了多模态、工作流、智能体等前沿发展方向,以及模型压缩、标准化接口等实用技术。文章还从商业视角分析了AI产业链中的"卖铲子"机会,并强调了数学基础与Transformer架构的技术底座作用,为理解大模型技术提供了全面框架。

2025-11-14 08:26:54 976

原创 SSH 隧道,实现本地 Pycharm 调用远程云服务GPU训练大模型,开发者必学!

本文介绍了SSH隧道技术在AI模型训练中的应用,主要解决两个问题:1)本地访问云平台非公网端口,如AutoDL上的自定义端口;2)实现Pycharm本地开发与远程GPU计算的无缝对接。文章详细演示了两种实现方式:图形化工具(Xterminal等)和命令行方法,并重点展示了通过SSH隧道实现本地Pycharm调用远程GPU进行模型训练的全过程,包括环境配置、数据同步、镜像设置等关键步骤,最终实现本地调试远程训练的高效开发模式。文末预告将单独分享模型训练案例。

2025-11-14 08:00:00 786

原创 基于RAGFlow+DeepSeek构建企业级知识库

本文详细介绍了从租用云服务器到部署RAGFlow知识库系统的完整流程。主要内容包括:1)安装Ollama和接入DeepSeek模型;2)Docker环境配置;3)RAGFlow项目部署与端口修改;4)服务启动验证;5)知识库测试及LLM模型接入。文章提供了具体的命令行操作指南和配置方法,并对部署过程中可能出现的问题给出了解决方案。通过Ollama接入DeepSeek模型后,用户可创建知识库、上传文件进行解析,并构建AI助理进行对话测试。

2025-11-13 15:42:40 931

原创 SpringBoot Actuator未授权访问漏洞修复

摘要:本文介绍了SpringBoot Actuator未授权访问漏洞的修复方案。该漏洞可能导致敏感信息泄露(如/env端点暴露环境变量)。解决方案包括:1)引入Spring Security,配置权限控制;2)关闭默认端点,仅暴露必要端点(如health/info);3)建议使用独立管理端口并设置IP白名单。关键步骤是创建安全配置类限制/actuator访问需ADMIN角色,并配置账号密码。通过禁用csrf和启用HTTP Basic认证来加强安全性。

2025-11-13 15:18:15 1267

原创 AI工具集导航网:一站式国内外人工智能网址导航大全

AI工具集(https://tools.lhagi.com/)是一个一站式AI工具导航平台,收录了国内外热门的AI应用资源。网站提供20多个分类,包括AI写作、图像处理、视频编辑、办公自动化等,每个工具都有详细介绍和同类推荐。其简洁直观的界面设计让用户能快速找到所需工具,还支持设为浏览器主页。此外,平台还提供"每日AI快讯"和博客文章,帮助用户获取最新AI资讯。该网站既是一个实用的工具导航站,也是一个动态的AI生态系统,适合各类用户探索使用。

2025-11-12 14:11:10 1386

原创 Transformers 与 Transformer 你以为是一样的么?别再错了!

摘要:HuggingFace的Transformers库是一个开源Python工具,提供BERT、GPT等预训练模型及NLP任务处理API,简化了模型加载和微调过程。Transformer模型则是2017年提出的基于自注意力机制的深度学习架构,相比RNN具有并行计算优势,已成为NLP领域的基础模型。两者的核心区别在于:Transformers是包含多种模型的工具库,而Transformer是具体的模型架构,前者为后者提供了应用实现框架。(136字)

2025-11-12 08:24:10 802

原创 tokenizer 和 tokenize 你真的搞明白了么?

本文解析了NLP中tokenizer与tokenize的核心区别:tokenizer是完整的分词工具,负责文本到数字的全流程处理(分词、映射ID、添加特殊标记等);tokenize仅是分词器的一个方法,单纯将文本拆分为token列表。以BERT为例,正确做法是直接调用tokenizer对象,而非单独使用tokenize方法,因为模型需要的是包含input_ids等信息的完整字典。类比翻译机功能,tokenizer相当于整机,tokenize只是其中的单词拆分模块。实际应用中应直接调用tokenizer处理文

2025-11-12 07:30:00 1346

原创 PyJWT 登录鉴权最佳实践【Refresh Token】

本文以PyJWT为例详细介绍了JWT身份认证技术的实现方案。文章首先分析了JWT的优缺点:优点包括跨平台、自包含、无状态等,缺点则涉及Token失效控制、安全风险等问题。针对这些问题,作者提出了refresh_token解决方案,通过设置短期有效(60分钟)的AccessToken和长期有效(24小时)的RefreshToken来平衡安全性与用户体验。文中提供了基于FastAPI的Python实现demo,包括登录、注销、Token校验等功能代码,并给出了Token失效时间的设置建议。最后还介绍了如何实现接

2025-11-11 11:24:30 809

原创 【大模型算法】超参数

深度学习模型训练中,Epoch、BatchSize、Iteration和学习率是四个关键超参数。Epoch指完整遍历训练数据的次数,BatchSize为每次参数更新前的样本数量,Iteration=ceil(数据集大小/BatchSize)×Epoch数。学习率控制参数更新步长,需根据优化器类型(BatchSize)调整。实践经验表明:小数据集需要更多Epoch(50-100),大数据集可较少Epoch(10-20);BatchSize需平衡内存限制(通常32-256)和训练效率;学习率常用值(SGD:0.

2025-11-11 07:00:00 1048

原创 如何通过神经网络看模型参数量?

本文通过一个三层神经网络示例(3输入、2输出、2隐藏层)演示了模型参数量的计算方法。第一层包含3×4=12权重和4偏置,共16参数;第二层4×4=16权重加4偏置,共20参数;输出层4×2=8权重加2偏置,共10参数,总计46个参数。参数数量由各层神经元连接数(权重)和偏置项决定,其中权重数量=输入维度×输出维度,偏置数量=输出维度。文中还展示了使用PyTorch查看参数的具体代码,包括权重初始化和激活函数设置。

2025-11-10 08:26:49 230

原创 Hugging Face 生态使用指南,大模型微调、预训练必备技能

本文系统介绍了HuggingFace生态系统的核心组件和使用方法。主要内容包括:HuggingFace生态概览,涵盖Transformers库、HuggingFace Hub和配套工具链;预训练模型的加载与使用,详细讲解AutoModel类和任务专用模型的加载方式;Tokenizer的原理与使用方法,展示文本预处理全流程;Datasets库的功能详解,包括数据加载、预处理和保存方法。文章通过大量代码示例,演示了从模型加载、数据处理到模型推理的完整流程,帮助开发者快速掌握HuggingFace工具链的使用技巧

2025-11-10 08:00:00 1369

原创 国外大模型汇总与评测

主流中文大模型评测资源汇总,涵盖Opencompass司南实验室、CLiB、LMSYS等权威评测平台,以及HuggingFace和OSSInsight的模型榜单。在企业私有化部署场景中,Qwen、DeepSeek、Llama、ChatGLM、Baichuan等开源模型表现突出,常被列入备选方案。同时推荐ArtificialAnalysis等专业评测网站,提供模型性能与API分析服务。(99字)

2025-11-09 09:08:07 310

原创 DeepSeek-OCR 上下文光学压缩详解与本地部署及vLLM推理

DeepSeek-OCR是由deepseek-ai团队于2025年10月推出的先进图像到文本模型,采用创新的"上下文光学压缩"技术,将文本信息转换为图像形式进行高效处理。该3B参数的模型支持多语言,在vLLM框架中优化运行,相比传统OCR方法可降低93.3%显存占用并提升3.2倍处理速度。其双核架构包含DeepEncoder视觉编码模块和DeepSeek-3B-MoE语义解码模块,支持从512×512到1280×1280多种分辨率模式。项目已在GitHub开源(MIT许可证),提供Tra

2025-11-09 09:04:32 1215

原创 Cookie、Session、Token 之Web身份认证技术的演进

本文系统梳理了Web应用状态管理技术的演进历程。最初通过Cookie解决HTTP无状态问题,但存在安全隐患;继而发展为Session方案,将敏感数据存储在服务端,使用SessionID进行验证,但面临服务器内存压力与分布式扩展难题;最终演进为Token(如JWT)方案,通过签名令牌实现去中心化验证,完美适应分布式架构和跨域场景,但牺牲了即时失效能力。三种方案各具特点:Cookie实现简单但不安全,Session安全可靠但不便扩展,Token扩展性强但无法主动注销。技术选择需根据应用规模、架构特点等实际需求进

2025-11-07 17:09:55 646

原创 全参数DeepSeek(671B)企业部署方案

摘要:本文介绍了DeepSeek-V3大模型的本地部署方案。基于ChatBI项目中Text2SQL能力需求,选择DeepSeek-v3结合vLLM框架部署。详细说明了FP8(700GB+)、BF16(1400GB+)和int4(450GB+)三种精度下的显存需求及硬件配置(8块A100显卡)。部署流程包括从魔搭社区下载权重文件、安装依赖环境、代码调用以及vLLM框架配置。同时提供了多服务器场景下的Ray集群部署方案。完整的技术文档和资源链接可供参考。

2025-11-07 17:07:55 1175

原创 Pytorch 内存布局优化:Contiguous Memory

连续内存(Contiguous Memory)指张量元素在内存中顺序排列,有利于CPU/GPU高效访问。PyTorch中,转置、切片等操作会生成非连续内存张量,影响计算性能。通过.contiguous()方法可优化内存布局,但现代PyTorch通常能自动处理。性能关键场景或自定义CUDA内核时需显式调用,日常计算一般无需手动处理。连续内存能显著提升计算速度(约2倍差异),但过度优化可能得不偿失。开发中应在确保功能正确后再考虑性能优化。

2025-11-06 12:06:07 578

原创 一文讲透PyTorch点积:从数学原理到大模型实战全解析

本文系统解析了PyTorch中常见的8种矩阵运算操作符(torch.dot、@、matmul等)的区别与应用场景。主要内容包括:1)点积的数学本质与几何意义;2)各操作符的输入输出形状规则与典型用法,重点对比了torch.dot、matmul、mv等函数的差异;3)批量矩阵乘法的形状推断技巧;4)NumPy与PyTorch在矩阵运算上的关键区别;5)大模型中的典型应用场景(如自注意力机制);6)性能优化技巧,强调向量化计算的重要性。文章提供了形状推断口诀、操作符选择指南和梯度验证方法等实用建议,适合深度学习

2025-11-06 11:56:43 1262

原创 每日AI要闻【20250818】

【AI专利动态速览】2025年8月18日,多家企业公布AI相关专利:南京银河之恋研发智能噪声监测装置;中电信数智推出大模型渲染决策系统;深蓝汽车开发AI图像识别装配辅助;广州图灵创新电动车定位修正技术;福鑫电子取得语音控制风扇专利;榜威电子申请智能照明控制方案;湔江信息研发AI安防视频分析;鞍钢工程布局机器视觉废钢识别。联想同期展示了"一横五纵"AI基础设施矩阵。这些创新涵盖工业、安防、家居等多个领域,展现AI技术应用的快速拓展趋势。(133字)

2025-08-18 17:48:06 485

原创 每日 AI 要闻 0815

今日AI领域迎来多项重大突破:昆仑万维发布MurekaV7.5模型,显著提升AI音乐创作的自然度和情感表现;谷歌Gemini新增记忆功能,实现更自然的对话交互;腾讯混元开源Hunyuan-GameCraft工具,可将图片转化为动态游戏视频;Anthropic宣布ClaudeSonnet4支持100万Token上下文窗口;OpenAI为GPT-5新增三种模式;Perplexity拟345亿美元收购谷歌Chrome;智谱开源多模态模型GLM-4.5V,在41个榜单达到SOTA水平。这些创新标志着AI技术在音乐、

2025-08-15 15:56:50 724

原创 @Autowired 和 @Resource 的区别

SpringBoot中@Autowired和@Resource注解对比:1.来源不同,@Autowired是Spring原生注解,@Resource来自JavaEE标准;2.默认注入策略不同,@Autowired按类型匹配,@Resource优先按名称匹配;3.@Autowired支持构造函数注入和可选注入,@Resource需显式指定名称或类型;4.纯Spring项目推荐@Autowired,需精确按名称注入或兼容JavaEE时使用@Resource。两者均可解决多Bean冲突问题,选择取决于具体场景需求

2025-08-15 08:00:21 324

原创 SaaS多租户实现方案

🧑‍🤝‍🧑 SaaS多租户实现方案

2025-08-08 08:56:10 888

原创 OpenAI gpt-oss on Ollama

新版Ollama应用内置可选网络搜索模块,使gpt-oss模型能获取最新网络信息(需登录Ollama账号保障使用安全,所有搜索数据不留存)。我们与OpenAI联合进行基准测试,确保模型实现与官方参考标准完全一致,并原生支持OpenAI默认的MXFP4格式,无需二次量化转换。针对数据中心级硬件推出Turbo加速模式,解决大模型在消费级GPU运行缓慢的问题,用户仍可通过原有接口无缝使用。与NVIDIA深化合作,优化gpt-oss在GeForce RTX系列显卡的性能表现,未来将发布详细技术白皮书。

2025-08-08 08:14:41 826

原创 [特殊字符] 打工人自救指南!20款AI神器承包你95%的职场痛点|附高清图谱

2024年AI效率工具大盘点!本文精选20款实测好用的AI神器,覆盖编程、设计、办公等全场景。编程推荐Trae国产神器,设计必试Midjourney+RunwayML组合,办公轻量用户可选豆包+Gamma。重点推荐自动化工作流设计技巧,如用Coze搭建图文生成脚本。避坑指南提示工具贵精不贵多,建议按需选择,团队协作推荐Dify开源平台。包含批量出图、代码生成、爆款文案拆解等实用场景解决方案,助你工作效率翻倍。(149字)

2025-08-05 09:28:41 156

原创 突破MyBatis开发瓶颈:Flex框架如何重塑Spring Boot数据层体验

MyBatis-Flex是一款轻量高效的MyBatis增强框架,具有以下核心优势: 轻量设计:无第三方依赖,通过SqlProvider实现,运行时不解析SQL 功能丰富:支持多主键、多表查询、逻辑删除、数据脱敏等企业级特性 卓越性能:基准测试显示其CRUD性能是同类框架的5-10倍 兼容性强:完全保留原生MyBatis功能,做到"只增强不限制" 相比MyBatis-Plus等框架,MyBatis-Flex在多表查询、多主键支持等方面表现更优,且免费提供数据脱敏、字段加密等高级功能。通过A

2025-07-18 09:52:37 867

清华大学 DeepSeek从入门到精通【104页超详细】

清华大学 DeepSeek从入门到精通【104页超详细】.pdf

2025-02-09

Transformer 相关论文

一文详解视觉Transformer模型压缩和加速策略(量化/低秩近似/蒸馏/剪枝)

2024-04-19

revosetup.exe

强制卸载软件Revo Uninstaller Pro 4 安装包:revosetup.exe

2019-10-13

阿里巴巴 Java 开发手册(嵩山版).pdf

嵩山版发布日期:2020.08.03 更新内容: 1)新增前后端规约 14 条。 2)新增禁止任何歧视性用语的约定。 3)新增涉及敏感操作的情况下日志需要保存六个月的约定。 4)修正 BigDecimal 类中关于 compareTo 和 equals 的等值比较。 5)修正 HashMap 关于 1024 个元素扩容的次数。 6)修正架构分层规范与相关说明。 7)修正泰山版中部分格式错误和描述错误

2020-08-04

firebug-1.12.5[1].xpi

firebug-1.12.5[1].xpi

2014-08-17

Firefox-full-latest.exe

Firefox-full-latest.exe

2014-08-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除