数据平滑(log1p和exmp1)

log1p将一个数据压缩到了一个区间,与数据的标准化类似。

log1p函数有它存在的意义,即保证了x数据的有效性,当x很小时(如某个数值为1e-99),由于太小超过数值有效性,用log计算得到结果为0,换作log1p则计算得到一个很小却不为0的结果。下图是numpy.log1p说明文档中给出的一个例子。

log1p的优点:
在数据预处理时首先可以对偏度比较大的数据用log1p函数进行转化,使其更加服从高斯分布,此步处理可能会使我们后续的分类结果得到一个更好的结果;
平滑处理很容易被忽略掉,导致模型的结果总是达不到一定的标准,同样使用逼格更高的log1p能避免复值得问题——复值指一个自变量对应多个因变量;

expm1函数是log1p的逆运算,即np.expm1(np.log1p(50))的结果为50.0。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值