经典算法 | 使用DP求解数组中最长子序列的个数

这是一道最长子序列题,子序列中的每一个数在原序列中不一定是相邻的,这一点要注意,用dp 解决,用dp[i]记录最后一个数字为nums[i]的最长子序列长度,用count[i]记录最后一个数字为nums[i]的最长子序列个数,

dp[i]=max(dp[j]+1),{j| j=0,1,2…i-1&&nums[j]<nums[i]},

count[i]=所有count[j]之和if(dp[j]+1==dp[i])

theAllMax代表dp中最大的那个值

最后dp[n]的值代表最长的子序列长度,for(eachint u in dp),当dp[u]== theAllMax的时候,sum+=count[u],最后sum的值就是最长子序列的个数

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {

	int n = nums.size();
	if (n == 0) return 0;
	vector<int> dp(n);
	vector<int> count(n, 0);

	dp[0] = 1;
	count[0] = 1;

	int tmp,tmpCount;
	int theAllMax = 1, theAllMaxCount=0;
	for (int i = 1; i < n; i++)
	{
		tmp = 0; tmpCount = 0;
		for (int j = i - 1; j >= 0; j--)
		{
			int t;
			if (nums[i] > nums[j])
			{
				t = dp[j] + 1;
				if (t > tmp) {
					tmp = t;
					tmpCount = count[j];
				}
				else if(t==tmp)
				{
					tmpCount += count[j];
				}
			}
		}
		if (tmp == 0) {
			tmp = 1;
			tmpCount = 1;
		}
		dp[i] = tmp;
		count[i] = tmpCount;
		if (tmp > theAllMax) {
			theAllMax = tmp;
		}
	}
	for (int i = 0; i < n; i++)
	{
		if (dp[i] == theAllMax)
			theAllMaxCount += count[i];
	}
	return theAllMaxCount;
}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值