经典算法 | 求整数的全部质数因子分析与解答

本文介绍了一种高效算法来找出一个正整数的所有质数因子,并解释了其背后的数学原理。通过逐步迭代和判断,该算法能显著提高查找速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有这么一道题:功能:输入一个正整数,按照从小到大的顺序输出它的所有质数的因子(如180的质数因子为2 2 3 3 5 )

最后一个数后面也要有空格

 

这一道题目让你找给定整数N的全部的质数因子。

一般的人可能会考虑每一次遍历一遍2到N的全部的整数,找到一个质数因子a,然后N/=a,直到N等于1,但是这种方法其实就是暴力搜索,时间效率并不好

其实有一种更好的方法,就是设定i=2,i一直递增,当N%i==0的时候,N/=i,否则i++,直到i>N,这样找到的所有N%i==0的i就是N的所有的质数因子

但是这样为何可行呢,

我们假设从2开始,找到的第一个N%i==0的i为a1,首先a1一定是质数,因为假如a1是合数的话在2和a1之间一定存在其他N可以整除的质数,但是i是从2开始找到的第一个可以整除的数,因此i只能是质数,也就是说i是N最小的质因子

我们进行N/=i,直到(N/=i)!=0,这里得到的每一个i都是N的质因子,假如这个时候N还有其他质因子存在,那么N>i,否则N<i算法结束

这个时候从2到a1的所有的质因子都分解完毕

然后从a1继续往后找,找到第二个N可以整除的数a2,a2不可能是合数,因为假如a2是和数的话,2到a1,或者是a1到a2之间一定存在没有分解的质数,而这是不可能的,所以a2一定是质数,且是N第二大的质因子,进行N/=a2,直到(N/=a2)!=0

继续以上操作,当找到最后一个质因子的时候,N==i,这个时候(N/=i)=1<i,算法结束,至此,N的所有质因子都找到了

代码:

#include <iostream>
using namespace std;
int main()
{
    long num;
    cin>>num;
     
    for(int i=2;i<=num;)
    {
        if(num%i==0)
        {
            cout<<i<<" ";
            num/=i;
        }
        else i++;
    }
    return 0;
}

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值