学习率是控制 LoRA 在 SDXL 模型中“学习快慢”的关键超参,需分别为 U‑Net(画图部分)和 Text Encoder(语义理解部分)设定不同的值。根据素材集规模,U‑Net 学习率从 3e‑6(10 张)到 2e‑4(> 3000 张)逐步提高,Text Encoder 则从 5e‑7 上升到 3e‑5。训练总步数也应随数据量增长而增加(约 800–> 10000 步),并配合 3%–5% 的 warmup 预热,让学习曲线“先升后衰”更平滑。小数据集需适当降低学习率、增加正则与梯度裁剪,大规模训练则可适当加大学习率并辅以 early‑stopping、dropout 等策略,以兼顾收敛速度与生成质量
SD框架下 LoRA 训练教程1-学习率U‑Net和 Text Encoder详解
于 2025-05-07 20:24:55 首次发布