概率图模型基础(7)——无向图模型(马尔可夫随机场-基本概念)


1. 引言

前文提到,贝叶斯网络最大的特点就是能够人为指定各个因素的影响方向,但是实际生活中并非如此,生活中的变量更多是相互影响的,因此,便有了无向图上的图模型——无向图模型,又叫马尔可夫网。不过在认识马尔可夫网之前,需要了解一下下面几个概念。


2. 参数化

2.1 示例

目前有四个学生a、b、c、d。a只跟b、d玩,b跟a、c玩,c只跟b、d玩,d只跟a、c玩。此时大家同时对一个解法的正确性产生了不同的见解,都试图想要说服对方。0代表同意,1代表否定,degree代表同意或者否定的程度,越大表示程度越强。关系网如下如所示:
图1

  • 只看a、b,可以发现二人勉强能统一意见;
  • 只看b、c,二者基本上能够统一意见;
  • 只看c、d,二者存在很大的分歧;
  • 只看a、d,二者基本上能够统一意见。

由于四个人的关系a不跟c玩,b不跟d玩,很难综合考虑四个人的意见,仿佛中了诅咒,那么,怎么才能打破这个诅咒呢?

于是上帝出手制定了如下规则:

  • rule 1:
    把几个人之间的同意或者否定的程度定义为一个因子,用 ϕ \phi ϕ表示,考虑了几个人的态度就把这几个人放到一起,用 S c o p e [ ϕ ] Scope[\phi] Scope[ϕ]表示。
    例如, ϕ 1 [ a , b ] \phi_1[a,b] ϕ1[a,b]表示考虑了a、b的意见。

  • rule 2:

    • 当考虑3个人时(以 a i , b i , c i a^i,b^i,c^i ai,bi,ci)为例,必须按照一下的规则计算。 i = 0 、 1 i=0、1 i=01 a i a^i ai代表 a a a的状态。
      P ( a , b , c ) = ϕ 1 ( a , b ) ∗ ϕ 2 ( b , c ) ∗ ϕ 3 ( c , a ) P(a,b,c)=\phi_1(a,b)*\phi_2(b,c)*\phi_3(c,a) P(a,b,c)=ϕ1(a,b)ϕ2(b,c)ϕ3(c,a)
    • 当考虑4个人时,必须按照一下的规则计算。
      P ( a , b , c , d ) = ϕ 1 ( a , b ) ∗ ϕ 2 ( b , c ) ∗ ϕ 3 ( c , d ) ∗ ϕ 4 ( d , a ) P(a,b,c,d)=\phi_1(a,b)*\phi_2(b,c)*\phi_3(c,d)*\phi_4(d,a) P(a,b,c,d)=ϕ1(a,b)ϕ2(b,c)ϕ3(c,d)ϕ4(d,a)
  • rule 3:
    考虑完所有人的意见之后,需要将其归一化。

根据上述三条规则:

  • 若四个人都同意该解法 a 0 , b 0 , c 0 , d 0 a^0,b^0,c^0,d^0 a0,b0,c0,d0,则有:
    P ( a 0 , b 0 , c 0 , d 0 ) = ϕ 1 ( a 0 , b 0 ) ∗ ϕ 2 ( b 0 , c 0 ) ∗ ϕ 3 ( c 0 , d 0 ) ∗ ϕ 4 ( d 0 , a 0 ) = 30 ∗ 100 ∗ 1 ∗ 100 = 300000 P(a^0,b^0,c^0,d^0)=\phi_1(a^0,b^0)*\phi_2(b^0,c^0)*\phi_3(c^0,d^0)*\phi_4(d^0,a^0)=30*100*1*100=300000 P(a0,b0,c0,d0)=ϕ1(a0,b0)ϕ2(b0,c0)ϕ3(c0,d0)ϕ4(d0,a0)=301001100=300000;
  • 若四个人状态为: a 1 , b 1 , c 0 , d 1 a^1,b^1,c^0,d^1 a1,b1,c0,d1,则有:
    P ( a 1 , b 1 , c 0 , d 1 ) = ϕ 1 ( a 1 , b 1 ) ∗ ϕ 2 ( b 1 , c 0 ) ∗ ϕ 3 ( c 0 , d 1 ) ∗ ϕ 4 ( d 1 , a 1 ) = 10 ∗ 1 ∗ 100 ∗ 1 ∗ 100 = 100000 P(a^1,b^1,c^0,d^1)=\phi_1(a^1,b^1)*\phi_2(b^1,c^0)*\phi_3(c^0,d^1)*\phi_4(d^1,a^1)=10*1*100*1*100=100000 P(a1,b1,c0,d1)=ϕ1(a1,b1)ϕ2(b1,c0)ϕ3(c0,d1)ϕ4(d1,a1)=1011001100=100000以此类推。

最后考虑完所有的人意见后,需要进行归一化处理
Z = ∑ a , b , c , d ϕ 1 ( a , b ) ⋅ ϕ 2 ( b , c ) ⋅ ϕ 3 ( c , d ) ⋅ ϕ 4 ( d , a ) Z= \sum_{a,b,c,d}\phi_1(a,b)·\phi_2(b,c)·\phi_3(c,d)·\phi_4(d,a) Z=a,b,c,dϕ1(a,b)ϕ2(b,c)ϕ3(c,d)ϕ4(d,a)
,即每个概率除以其加和,于是有:

此时再看AB的意见,已经变成了:

由此可见,在考虑了四个人的大背景下,其实a、b两个人的意见是相左的。

2.2 因子

在2.1节中,把几个重要的概念定义一下:

  • a,b,c,d就是变量的集合 D D D
  • a,b,c,d每个人的态度叫做 V a l ( D ) Val(D) Val(D)
  • 能够将不同人的意见联系起来的东西,叫因子,它能够把程度变成一个量化的数字;
  • 某个因子中考虑的人称为该因子的辖域

概念:

  1. 假定 D D D表示随机变量的集合,因子 ϕ \phi ϕ定义为从 V a l ( D ) Val(D) Val(D)映射到实数域 R R R的一个函数,假如因子中所有的值均为非负,则该因子为非负的
  2. 变量集 D D D称为因子的辖域,记为 S c o p e [ ϕ ] Scope[\phi] Scope[ϕ]
  3. 分配函数,用作归一化。
  4. 因子的操作:令 X , Y , Z X,Y,Z X,Y,Z是三个不相交的变量集,且令 ϕ 1 ( X , Y ) \phi_1(X,Y) ϕ1(X,Y) ϕ 2 ( Y , Z ) \phi_2(Y,Z) ϕ2(Y,Z)是两个因子,定义其乘积为新的因子 Φ ( X , Y , Z ) \Phi(X,Y,Z) Φ(X,Y,Z)
    Φ ( X , Y , Z ) = ϕ 1 ( X , Y ) ⋅ ϕ 2 ( Y , Z ) \Phi(X,Y,Z)=\phi_1(X,Y)·\phi_2(Y,Z) Φ(X,Y,Z)=ϕ1(X,Y)ϕ2(Y,Z)

因子积的例子

2.2.1 因子的实际意义

利用该分布回答查询,例如在a,b,c上求和,可以得出 P ( b 1 ) = 0.7323 , P ( b 0 ) = 0.268 P(b^1)=0.7323, P(b^0)=0.268 P(b1)=0.7323,P(b0)=0.268,其意义为:B同学有26%的几率同意,如果我们知道c同学同意的情况下( c 0 c^0 c0),那么 P ( b 1 ∣ c 0 ) = 0.06 P(b^1|c^0)=0.06 P(b1c0)=0.06

注意:

2.2.2 打破诅咒的方法

从下图右侧可以看出,b与c,c与d,d与a的联系性最强,而ab之间稍弱,因此,若要打破这个无向图,需要从ab之间的关系下手。


3. 吉布斯分布

3.1 吉布斯分布定义

假如分布 P Φ P_{\Phi} PΦ定义如下:
(3.1) P Φ ( X 1 , . . . , X n ) = 1 Z P ~ Φ ( X 1 , . . . , X n ) P_{\Phi}(X_1,...,X_n)=\frac{1}{Z}\widetilde{P}_{\Phi}(X_1,...,X_n) \tag{3.1} PΦ(X1,...,Xn)=Z1P Φ(X1,...,Xn)(3.1)
其中
(3.2) P ~ ( X 1 , . . . , X n ) = ϕ 1 ( D 1 ) ⋅ . . . ⋅ ϕ m ( D m ) \widetilde{P}(X_1,...,X_n)=\phi_1(D_1)·...·\phi_m(D_m) \tag{3.2} P (X1,...,Xn)=ϕ1(D1)...ϕm(Dm)(3.2)

(3.3) Z = ∑ X 1 , . . , X n P ~ Φ ( X 1 , . . . , X n ) Z= \sum_{X_1,..,X_n}\widetilde{P}_{\Phi}(X_1,...,X_n) \tag{3.3} Z=X1,..,XnP Φ(X1,...,Xn)(3.3)
分布 P Φ P_{\Phi} PΦ就称为吉布斯分布


4 无向图模型(马尔可夫网)

4.1 定义

马尔可夫网需要满足的条件:

  1. 无向图
  2. 无向图中每个节点表示一个或者一组势函数,也就是我们前文提到的“因子”。

4.2 团

马大爷说:这些因子各自抱团,于是就有了团的概念。当然是我瞎说的。

一条小团团

在无向图中任何两个结点均有边连接的结点子集称为,例如,在下图中,假设有随机变量 X 1 , X 2 , X 3 , X 4 X_1,X_2,X_3,X_4 X1,X2,X3,X4,则 { X 1 , X 2 } \left \{X_1,X_2 \right \} {X1,X2}构成了一个 { X 1 , X 4 } \left \{X_1,X_4 \right \} {X1,X4}未构成团。

此时,再往中加入任意一个结点,若集合不满足成的条件,则称加入结点之前的最大团。如,往集合 { X 1 , X 2 } \left \{X_1,X_2 \right \} {X1,X2}中加入 X 3 X_3 X3 X 1 , X 2 , X 3 X_1,X_2,X_3 X1,X2,X3三个点之间均有边连接,依然满足成的条件,但是若继续加入结点 X 4 X_4 X4,由于 X 1 X_1 X1不与 X 4 X_4 X4相连,故而 { X 1 , X 2 , X 3 } \left \{X_1,X_2,X_3 \right \} {X1,X2,X3}最大团
无向图的团和最大团

4.3 马尔可夫随机场(Markov Random Field, MRF)

马尔可夫随机场作为一种典型的马尔可夫网,其多个变量之间的联合概率分布能够基于团分解为多个因子的乘积,每个因子仅与一个团有关。

4.3.1 MRF中的联合概率

假设有 N N N个变量, X = { X 1 , X 2 , . . . , X N } \boldsymbol{X}=\{X_1,X_2,...,X_N\} X={X1,X2,...,XN},所有团构成的集合为 C C C,与团 Q ∈ C Q \in C QC对应的变量集合记为 X Q X_Q XQ,则联合概率 P ( x ) P(x) P(x)定义为(就是吉布斯分布):
(4.1) P ( x ) = 1 Z ∏ Q ∈ C Φ Q ( X Q ) P(x)=\frac{1}{Z}\prod_{Q\in C}\Phi_Q(X_Q) \tag{4.1} P(x)=Z1QCΦQ(XQ)(4.1)

但是由于随机变量 X X X过多,所对应团的数量也过多,因此采用最大团来定义:所有最大团构成的集合为 C ∗ C^* C,与最大团 Q ∈ C ∗ Q \in C^* QC对应的变量集合记为 X Q ∗ X_{Q^*} XQ,则联合概率 P ( X ) P(X) P(X)定义为:
(4.2) P ( X ) = 1 Z ∗ ∏ Q ∈ C ∗ Φ Q ( X Q ) P(X)=\frac{1}{Z^*}\prod_{Q\in C^*}\Phi_Q(X_Q) \tag{4.2} P(X)=Z1QCΦQ(XQ)(4.2)
所以4.2节中,无向图的团和最大团的联合概率分布可以定义为:
(4.3) P ( X ) = 1 Z ϕ 123 ( X 1 , X 2 , X 3 ) ⋅ ϕ 234 ( X 2 , X 3 , X 4 ) P(X)=\frac{1}{Z}\phi_{123}(X_1,X_2,X_3)·\phi_{234}(X_2,X_3,X_4) \tag{4.3} P(X)=Z1ϕ123(X1,X2,X3)ϕ234(X2,X3,X4)(4.3)

4.3.2 另一种表示方法——对数

在公式(4.2)中,联合概率 P ( X ) P(X) P(X)各个团通过连乘的方式表达:
(4.2) P ( X ) = 1 Z ∗ ∏ Q ∈ C ∗ Φ Q ( X Q ) P(X)=\frac{1}{Z^*}\prod_{Q\in C^*}\Phi_Q(X_Q) \tag{4.2} P(X)=Z1QCΦQ(XQ)(4.2)

更一般的,把 Φ Q ( X Q ) \Phi_Q(X_Q) ΦQ(XQ)换成了 exp ⁡ ( − w Q f Q ( X Q ) ) \exp(-w_Qf_Q(X_Q)) exp(wQfQ(XQ))

因此有如下表达形式:
(4.4) P ( X ) = 1 Z ∗ ∏ Q ∈ C ∗ exp ⁡ ( − w Q f Q ( X Q ) ) = 1 Z ∗ exp ⁡ ( ∑ Q ∈ C ∗ − w Q f Q ( X Q ) ) \begin{aligned} P(X)=&\frac{1}{Z^*}\prod_{Q\in C^*}\exp(-w_Qf_Q(X_Q))\\ =&\frac{1}{Z^*}\exp(\sum_{Q\in C^*}-w_Qf_Q(X_Q)) \tag{4.4} \end{aligned} P(X)==Z1QCexp(wQfQ(XQ))Z1exp(QCwQfQ(XQ))(4.4)
其中, w Q w_Q wQ为某一个团的系数 f Q f_Q fQ则代表特征函数

举个栗子:
在图中

考虑 A , B A,B A,B的关系,指示特征函数 f f f可以表示为:
f a , b ( A , B ) = { 1 , A = a , B = b 0 , O t h e r f_{a,b}(A,B)= \left\{\begin{matrix} 1, & A=a,B=b\\ 0, & Other \end{matrix}\right. fa,b(A,B)={1,0,A=a,B=bOther
为了表示 A , B A,B A,B的关系,引入四个对应表值的特征,所以有:
在这里插入图片描述
而此时, A , B A,B A,B的关系只可能是4中情况中的一种,所以
ϕ ( X 1 , X 2 ) = exp ⁡ ( − ∑ k l w k l f 12 k l ( X 1 , X 2 ) ) \phi(X_1,X_2)=\exp(-\sum_{kl}w_{kl}f^{kl}_{12}(X_1,X_2)) ϕ(X1,X2)=exp(klwklf12kl(X1,X2))
其中, w k l = − log ⁡ ( a k l ) w_{kl}=-\log(a_{kl}) wkl=log(akl) k l = { 00 , 01 , 10 , 11 } kl=\{00, 01, 10, 11\} kl={00,01,10,11}

不管用哪种表示法,都不用再为 { X 1 , X 2 } \{X_1,X_2\} {X1,X2} { X 2 , X 3 } \{X_2,X_3\} {X2,X3} { X 3 , X 4 } \{X_3,X_4\} {X3,X4}构建势函数了。

那么,怎么寻找这些特殊的点呢?

4.3.3 MRF中的独立性

这里有个问题啊,一开始以为分离集对应的就是连接最大团之间的点,结果发现不是,只是分离两个结点集的结点的集合???那这样的话分离集内结点的多少不是取决于连接结点集的结点数目????

解答:
意思就是说: χ \chi χ是所有结点的集合,X,Y,Z是其中三个不互相包含的结点集,且有 X ⋃ Y ⋃ Z = χ X\bigcup Y\bigcup Z=\chi XYZ=χ,那么,在给定Z时,任意两个结点 x ∈ X x \in X xX y ∈ Y y \in Y yY之间没有路径,那么Z就是他们的分离集。

对于满足“条件独立”的点的确定可以参考《概率图模型基础(2)——贝叶斯网络中的因果关系》中结构1,2,3。

根据结构1,2,3可知:只要满足结构2即可。以下图为例


简化后为

所以:马尔可夫随机场有的三个性质:

  • 成对马尔可夫性
    成对马尔可夫示意图
    结点X、Y互不相连,其他所有节点记为Z。此时:在给定随机变量组Z的情况下,X, Y条件独立,即有
    P ( X , Y ∣ Z ) = P ( Y ∣ Z ) P ( X ∣ Z ) P(X, Y|Z)=P(Y|Z) P(X|Z) P(X,YZ)=P(YZ)P(XZ)

  • 局部马尔可夫性
    局部马尔科夫示意图

在图中任意取一个结点X,将与之有边相连的结点均记为Z,Y是除Z、X之外的所有点,X表示随机变量X,Z表示随机变量组为Z,Y表示随机变量组Y,则:在给定随机变量组Z的情况下,X, Y条件独立,即有
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ P(X, Y|Z)&=P(X…

  • 全局马尔科夫性
    全局马尔科夫示意图
    在图中设有集合X,Y是被集合Z分开的任意结点集合,其所对应的随机变量组分别为X,Y,则在此条件下,认定随机变量组Z条件下,随机变量组X,Y是条件独立的。
    P ( X , Y ∣ Z ) = P ( X ∣ Z ) P ( Y ∣ Z ) P(X, Y|Z)=P(X|Z) P(Y|Z) P(X,YZ)=P(XZ)P(YZ)

如果联合概率分布 Y Y Y满足成对、局部或全局马尔可夫性,则该联合概率分布为概率无向图模型(马尔科夫随机场)。


5 Markov的独立性

概率图模型基础(3)——贝叶斯网络的独立性
的独立性中介绍了贝叶斯网络的I-Map和P-Map,那么,在Markov网中,二者有和不同?

对于规则:

  1. D、I相互独立
  2. 在给定G的条件下,D、I相互依赖。

贝叶斯网中P-Maps的表达结构为:

但是在马尔可夫网中,

该连接方式可能表现为在给定G的条件下,D、I相互独立。要是D、I相互依赖,只能表现为下图的形式,但又遗失了规则1.

小结:


6 参考文献

  • Coursera——Probabilistic Graphical Models
  • Probabilistic Graphical Models - Principles and Techniques
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值