sklearn.metrics模块重要API的原理与应用总结(持续更新)

0. 前言

平时训练模型,会写一些评估函数,简单的评估函数如准确率等很容易实现,当使用AUC、NDCG等指标时,调用sklearn.metrics不仅准确可靠,而且速度飞快。

sklearn有三种不同的度量:

  • Estimator score method:估计器有一个评分方法,为他们要解决的问题提供默认的评估标准。
  • Scoring parameter:模型评估工具使用交叉验证(如model_selection.cross_val_scoremodel_selection.GridSearchCV)依赖于内部评分策略。
  • Metric functionssklearn.metrics 模块实现了为特定目的评估预测误差的功能。这些指标在分类指标(Classification metrics)、多标签排名指标(Multilabel ranking metrics)、回归指标(Regression metrics)和聚类指标(Clustering metrics)部分中有详细说明。

本节主要就是介绍Metric functions

参考资料:
sklearn.metrics官方文档

1. 各类指标

sklearn.metrics一个package,包含评分函数(score functions)、性能指标(性能指标)、pairwise metrics和距离计算(distance computations)。

分类指标(Classification metrics)

混淆矩阵

在这里插入图片描述
上图就是混淆矩阵(Confusion Matrix)。

confusion_matrix(y_true, y_pred)

y_true = [0, 0, 0, 1, 1, 1, 1, 1]
y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
print(confusion_matrix(y_true, y_pred))
"""
输出:
[[2 1]
 [2 3]]
"""
# 求混淆矩阵各个元素的值
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()

Precision,Recall和F1

参考:

precision简称为 P \text{P} P,分为 macro-P \text{macro-P} macro-P micro-P \text{micro-P} micro-P weighted-P \text{weighted-P} weighted-P

二分类

西瓜书上说的就是二分类,其:

查准率(Precision) P = T P T P + F P P={\frac {TP} {TP+FP}} P=TP+FPTP,挑出的西瓜中,有多少比例是好瓜。

查全率(Recall) R = T P T P + F N R={\frac {TP} {TP+FN}} R=TP+FNTP,所有好瓜中,有多少比例被挑出来。

F1 F 1 = 2 × P × R P + R = 2 × T P 样 本 总 数 + T P − T N F1={\frac {2\times P\times R} {P+R}}={\frac {2\times TP} {样本总数+TP-TN}} F1=P+R2×P×R=+TPTN2×TP,P和R的调和平均数。

from sklearn.metrics import precision_score, recall_score,f1_score
y_true = [0, 0, 1, 1, 1, 1]
y_pred = [0, 1, 0, 1, 0, 1]
precision_score(y_true, y_pred)
"""
输出:0.6666666666666666
TP=2, FP=1
根据公式可得P=2/(2+1)=2/3
"""
recall_score(y_true, y_pred) # 同理
f1_score(y_true, y_pred) # 同理
多分类
多标签分类

平均查准率(AP)

本节解释:average_precision_score

sklearn官方文档:sklearn.metrics.average_precision_score
wiki百科:Average precision

在wiki百科中,平均查准率(average precision, AP)的定义为P-R曲线下的面积
AP = ∫ 0 1 p ( r ) d r \text{AP}=\int_{0}^{1}p(r)dr AP=01p(r)dr,其中 p ( r ) p(r) p(r) 是召回率 r r r 的函数。

实践中,上面的积分会被文档排序序列中每个位置的有限和所取代
AP = ∑ n ( R n − R n − 1 ) P n \text{AP} = \sum_n (R_n - R_{n-1}) P_n AP=n(RnRn1)Pn

根据定义可以知道,AP的积分公式就是sklearn.metrics.auc的原理,AP的有限梯度和APIaverage_precision_score就是积分的逼近公式,其验证代码见“相关结论”一节的讨论。

准确率

准确度分类得分。为样本预测的标签集必须与y_true中的相应标签集完全匹配。也可以给样本加权,详见sklearn.metrics.accuracy_score文档

accuracy_score(y_true, y_pred)

y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
accuracy_score(y_true, y_pred)
"""
输出:
0.5
"""

通用梯度法则求曲线下面积

使用梯形法则(trapezoidal rule)求曲线下的面积“Area Under the Curve (AUC) ”。这是一个通用的求曲线下面积的函数,只需要给定曲线上的点。要计算ROC曲线下的面积,使用roc_auc_score

简单来说,这就是一个根据梯形法则逼近曲线在区间内的积分,比如我们计算 y = x 2 y=x^2 y=x2 在区间 [ 0 , 2 ] [0,2] [0,2] 内的面积,通过牛顿-莱布尼茨公式可以计算出其面积为 8 3 {\frac 8 3} 38,我们只需要给定 y = x 2 y=x^2 y=x2 曲线在 [ 0 , 1 ] [0,1] [0,1] 上的点,就可以用梯形法则逼近其区间内的面积,见如下图片及代码部分(图片来源于南安普顿大学)。
在这里插入图片描述

sklearn.metrics.auc(x, y)
x:x坐标,要么是单调递增,要么是单调递减。
y:y坐标。

import numpy as np
from sklearn import metrics
# n越大,结果越精确
n = 10000000
x = np.linspace(0,2,n)
y = x**2
metrics.auc(x, y)
"""
输出:
2.6666666666666803
"""

DGC和nDCG

DCG(Discounted Cumulative Gain)和nDCG(Normalized DCG)的原理类似,都是按照预测得分的顺序对真实相关性进行排序,并应用相应的discount(如除以 l o g 2 ( i + 1 ) log_2(i+1) log2(i+1)),然后加和。

sklearn.metrics.ndcg_score(y_true, y_score, k)
y_true:排名items的真实得分。(在搜索中,可以理解为items与query的相关性。)
y_scores:模型给出的items的得分。
k: 只考虑排名最高的k个items的dcg。

注意:y_scores的作用仅仅是为了对y_true进行排序,最终计算的事y_true在y_scores给出的排序下的dcg。

原理参见:我的博文nDCG笔记及在spark中的实现

classification_report

打印分类相关的指标,包括 precision、recall、f1-score及相应的accuracy,macro avg和weighted avg。

from sklearn.metrics import classification_report
y_true = [1,2,3,1,2,3,1,2,3]
y_pred = [1,2,3,2,1,1,2,1,3]
print(classification_report(y_true, y_pred, target_names=["类别1","类别2","类别3"]))
"""
输出:
              precision    recall  f1-score   support

         类别1       0.25      0.33      0.29         3
         类别2       0.33      0.33      0.33         3
         类别3       1.00      0.67      0.80         3

    accuracy                           0.44         9
   macro avg       0.53      0.44      0.47         9
weighted avg       0.53      0.44      0.47         9
"""

回归指标(Regression metrics)

多标签排序指标(Multilabel ranking metrics)

聚类指标(Clustering metrics)

双聚类指标(Biclustering metrics)

距离指标(Distance metrics)

Pairwise metrics

绘图

相关结论

metrics.average_precision_score与metrics.auc的梯形法则逼近

通过前文的分析可知,average_precision_score是对PR曲线的梯形法则的有限逼近,auc是直接求PR曲线下的积分(或者说是无限逼近),我们分别设置不同的梯形个数来逼近PR曲线下的面积,结果如下:

梯形个数average_precision_score与auc的误差
1010%
1001.8%
10000.26%
100000.04%

代码如下:

from tqdm import tqdm
import numpy as np
from sklearn.metrics import average_precision_score, precision_recall_curve, auc
def func(k):
    """
    k 梯形个数
    """
    L = []
    for i in tqdm(range(200)):
        y_true = np.random.randint(0,2,k)
        y_pred = np.abs(np.random.randn(k))+y_true/6
        ap1 = average_precision_score(y_true, y_pred)
        P,R,thres = precision_recall_curve(y_true,y_pred)
        ap2 = auc(R, P)
        L.append((ap1,ap2))
    A1 = np.array(L)
    return np.mean((A1[:,0]-A1[:,1])/A1[:,0])

func(k=10000)
  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值