兔子问题(斐波那契数列)

本文探讨了著名的兔子问题,该问题涉及到斐波那契数列的运用。通过分析兔子的繁殖规律,展示了一个以1、1开始,每一项为前两项之和的数列,即斐波那契数列。文章还将讨论如何用数学函数来表示这一序列,并可能涉及其在实际问题中的实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有这样一个有趣的“兔子问题”:“假定一对大兔子每月能生一对小兔子,且每对新生的小兔子经过一个月可以长成一对大兔子,具备繁殖能力,如果不发生死亡,且每次均生下一雌一雄,问一年后共有多少对兔子?”

分析:第一个月兔子没有繁殖能力,所以还是一对;两个月后生下一对兔子,共有两对;三个月后,老兔子生下一对,小兔子还没有繁殖能力,所以一共是三对,以此类推,可以列出下表


表中1,1,2,3,5,8,13.....构成一个序列,这个数列有一个特点就是前两项之和等于后一项


数学函数定义:


实现:

public class Fibonacci {

    //数组实现
    public static void FbiArray(int n){
        int i;
        int []a = new int[n];
        a[0] = 0;
        a[1] = 1;
        for (i = 2; i < n; i++){
            a[i] = a[i - 1] + a[i - 2];
            System.out.println(a[i]);
        }
    }

    //递归实现
    public static int Fbi(int n){
        if (n < 2)
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值