最大和
-
描述
-
给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:9 2
-4 1
-1 8
其元素总和为15。-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
- 输出矩阵的最大子矩阵的元素之和。 样例输入
-
1 4 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
//思路:转化为一维数组,求一维数组的最长子序列(同372巧克力题) #include<stdio.h> #include<string.h> int a[101][101]; int b[101],sum[101]; int main() { int n,r,c,i,j,k,max; scanf("%d",&n); while(n--) { scanf("%d%d",&r,&c); for(i=1;i<=r;i++) for(j=1;j<=c;j++) scanf("%d",&a[i][j]); max=-1000000000;//注意序列的最小值 for(i=1;i<=r;i++) { memset(b,0,sizeof(b)); memset(sum,0,sizeof(sum)); for(k=i;k<=r;k++) { for(j=1;j<=c;j++) { b[j]+=a[k][j]; if(sum[j-1]>=0) sum[j]=sum[j-1]+b[j]; else sum[j]=b[j]; if(max<sum[j]) max=sum[j]; } } } printf("%d\n",max); } return 0; }
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;