RAG+知识图谱

RAG结合知识图谱的应用场景有哪些?

RAG已经是相当成熟的落地技术,但它有一个短板:RAG没办法处理检索能力覆盖不到的知识。知识图谱能给大模型提供很多语料和检索之外的知识,进而使模型效果大大提升。可以用到知识图谱的环节:

(1)文档切片环节:实际情况要么切片太大,给大模型引入一堆无关知识,影响准确度;要么切片太小,知识不完整,没办法回答问题。

可以通过知识图谱,把实体相关知识点都放入到一个切片中,这样就能保证切片的细粒度刚刚合适。保证每一个片段都有且只有一个知识点,这样才最有利于检索。

(2)排序环节:在检索时,经常会出现相关性最高的切片里根本没包含最优答案内容的情况。

可以通过知识图谱让所有切片构建出实体关系,可以大大提升找出切片里包含最优内容的概率。

(3)query改写:如用户提问“iphone7发布的时候,在任的美国总统发布了哪些关于医保的政策。”如果说直接去检索,基本找不到对应的知识,但是通过知识图谱,我们可以知道当时的总统是奥巴马,把问题直接改写成“奥巴马发布了哪些关于医保的政策”,再去检索。

(4)答案生成环节:1)给生成的答案进行内容补充 2)给错误答案进行校正或者置信度打分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值