分形递归画图案图片DIY

                                    递归,用最少的代码量完成最大的工作量,初步对递归开始上心是因为机试老师给了一道题,看到后开始着急忙慌就开始做,最后那个代码量,就不忍吐槽了,自己还觉得挺自豪的,写了那么多行代码,也打印出了正确图形,蠢话,结果老师一公布他的答案,和我几百行的代码相比老师只用了7行,完败。。。。。。。。。

于是觉得与其拿到题就开始做不如先找规律,本来思想就比代码重要,分形就是用递归画出美丽的图案,那些平时在我们眼中单调无趣的线条以及点,就能在不断递归中画出自然界之美。

我随意挑了两个比较有代表性的图案

画出的图如下所示:



 

 

 

 

以下是代码实现:

import java.awt.BorderLayout;

import java.awt.Color;
import java.awt.FlowLayout;
import java.awt.Graphics;
import java.util.Random;

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class Main extends JFrame {
	 
    private Color color;
    double a,b,c,d;  
    
    double x1=0;  
    double y1=0;  
    double x2,y2;  
    public static void main(String[] args) {
             // TODO Auto-generated method stub
             Main a = new Main();
             a.draw();
 }
   
     public void draw(){//绘制界面,建立画布
         this.setSize(1000,800);//
         this.setLocationRelativeTo(null);
         this.setDefaultCloseOperation(3);
         this.setLayout(new FlowLayout());
         //设置可见
         this.setVisible(true);
        
         Graphics g = this.getGraphics();
         //调用·手镯图形
         this.magic(g);

     }
     //手镯图形,公式已经得知
     public void magic(Graphics g){
    	double a = 1.40,b = 1.56,c = 1.40, d = -6.56;   
         for(int i=0;i<12133;i++){  
             for(int t=0;t<80;t++){  
                 Color co = new Color(t++,t*2,t*3);  
                 g.setColor(co); }  
          
             double x2=d*Math.sin(a*x1)-Math.sin(b*y1);  
             double y2=c*Math.cos(a*x1)+Math.cos(b*y1);  
             int x22= (int) (x2*30)+300;  
             int y22=(int) (y2*30)+200;  
             System.out.println(x22+","+y22);  
             g.drawLine(x22,y22,x22,y22);  
             x1=x2;  
             y1=y2;}  
     }
     
     public void paint(Graphics g){
                      super.paint(g);
                      this.magic2(500,550,100, Math.PI/2,0,Math.PI/6,25,g);
                      //(Math.PI为180°)
     }
     
     public void magic2(double x0,double y0,double l,double a,double b,double c,double count,Graphics g){
    	ImageIcon cat=new ImageIcon("image//$R7U8UGI.gif");
 		ImageIcon dog=new ImageIcon("image//$RJT225K.gif");
 		ImageIcon panda=new ImageIcon("image//$RM069VP.gif");
 		
 
         double x2;
         double y2;
         double x3;
         double y3;
         double x4;
         double y4;
         double x5;
         double y5;
         Random r=new Random();
         //颜色随机变化
         color = new Color(r.nextInt(256),r.nextInt(256),r.nextInt(256));
         g.setColor(color);
         if(count<1)
         {
                  return;
         }//判断是否继续进行递归调用,注意:判断一定要放在递归调用之前,否则这段代码将永远不会被执行
   x2 = x0 - l*Math.cos(a);
   y2 = y0 - l*Math.sin(a);
   x3 = x2 - l*Math.cos(b);
   y3 = y2 - l*Math.sin(b);
   x4 = x0 - l*Math.cos(b);
   y4 = y0 - l*Math.sin(b);
   x5 = x2 - l*Math.cos(Math.PI/6)*Math.cos(c);
   y5 = y2 - l*Math.cos(Math.PI/6)*Math.sin(c);
//可画图形,计算五个点的位置,以右下点为(X0,Y0)
   //g.drawImage(cat.getImage(),(int)x0-300,(int)y0-300, null);
   //g.drawImage(panda.getImage(),(int)x2-300,(int)y2+300, null);
   //g.drawImage(dog.getImage(),(int)x3,(int)y3, null);
   //g.drawImage(cat.getImage(),(int)x4,(int)y4, null);
   //g.drawImage(panda.getImage(),(int)x5,(int)y5, null);
   g.drawLine((int)x0, (int)y0, (int)x2, (int)y2);
   g.drawLine((int)x2, (int)y2, (int)x3, (int)y3);
   g.drawLine((int)x3, (int)y3, (int)x4, (int)y4);
   g.drawLine((int)x4, (int)y4, (int)x0, (int)y0);
   g.drawLine((int)x2, (int)y2, (int)x5, (int)y5);
   g.drawLine((int)x5, (int)y5, (int)x3, (int)y3);
//递归调用
         magic2(x2,y2,l*Math.cos(Math.PI/6),a+Math.PI/6,b+Math.PI/6,c+Math.PI/6,count-1,g);
         magic2(x5,y5,l*Math.sin(Math.PI/6),a-Math.PI/3,b-Math.PI/3,c-Math.PI/3,count-1,g);

     }
     private Color getColor(int inc){
 		int red = color.getRed();
 		int green = color.getGreen();
 		int blue = color.getBlue();
 		red += inc;
 		green += inc;
 		blue += inc;
 		
 		if(red > 255)
 			red = 255;
 		if(green > 255)
 			green = 255;
 		if(blue > 255)
 			blue = 255;
 		return new Color(red,green,blue);
 	}



        
     }

 

 

递归的方法分形图 用递归的方法分形图   分形几何是数学领域里新兴的课题,如果将图形的每个元素按某种规则进行变形,得到新的图形,以此类推,进行若干次变形后得到的图形就是分形图形。Couch曲线是最典型的分形图形:   将一条线段按照图1进行变换,得到图1,再将图1中的每条线段按图1的折线变换得到图2,以此类推,进行6次变换就得到图6,如果进行无限次变换,就得到的是Couch曲线,Couch曲线的维数不是整数维,更多详情请见分形方面的书籍。   用分形图形图许多漂亮的图案而被广泛地应用,下面将几个简单的分形图形的代码与图形大家分享。 //Couch曲线的法 void Couch(CDC *pDC,int x1,int y1,int x2,int y2,int n) { //pDC是图的设备上下文的指针 //x1,y1,x2,y2是起始的两点 //其中参数n是递归的层数 int x3,y3,x4,y4,x5,y5; //以下是根据空间几何计算出来的坐标 x3=x1+(x2-x1)/3; y3=y1+(y2-y1)/3; x4=x1+(x2-x1)*2/3; y4=y1+(y2-y1)*2/3; x5=x3+(x4-x3)/2+int(sqrt(3)*(y4-y3)/2); y5=y3-int(sqrt(3)*(x4-x3)/2)+(y4-y3)/2; //递归最后一层,递归的出口 if(n==1) { pDC->MoveTo(x1,y1); pDC->LineTo(x3,y3); pDC->LineTo(x5,y5); pDC->LineTo(x4,y4); pDC->LineTo(x2,y2); } else { //递归图 Couch(pDC,x1,y1,x3,y3,n-1); Couch(pDC,x3,y3,x5,y5,n-1); Couch(pDC,x5,y5,x4,y4,n-1); Couch(pDC,x4,y4,x2,y2,n-1); } } //斯宾斯基篓垫的法 void Floor(CDC *pDC,int x1, int y1,int x2,int y2,int x3,int y3,int n) { //pDC是图的设备上下文的指针 //x1,y1,x2,y2,x3,y3是起始的三角形的三点坐标 //其中参数n是递归的层数 int x11,x22,x33,y11,y22,y33; //以下是根据空间几何计算出来的坐标 x11=(x2+x3)/2; y11=(y2+y3)/2; x22=(x1+x3)/2; y22=(y1+y3)/2; x33=(x1+x2)/2; y33=(y1+y2)/2; pDC->MoveTo(x11,y11); pDC->LineTo(x22,y22); pDC->MoveTo(x11,y11); pDC->LineTo(x33,y33); pDC->MoveTo(x22,y22); pDC->LineTo(x33,y33); //递归最后一层,递归的出口 if(n==1) { pDC->MoveTo(x11,y11); pDC->LineTo(x22,y22); pDC->LineTo(x33,y33); pDC->LineTo(x11,y11); } else { //递归图 Floor(pDC,x1,y1,x33,y33,x22,y22,n-1); Floor(pDC,x33,y33,x2,y2,x11,y11,n-1); Floor(pDC,x22,y22,x11,y11,x3,y3,n-1); } } //分形矩形的法 void Rect(CDC *pDC,int x1,int y1,int x2,int y2,int n) { //pDC是图的设备上下文的指针 //x1,y1,x2,y2是起始矩形坐标 //其中参数n是递归的层数 int x3,y3,x4,y4,x5,y5,x6,y6; //以下是根据空间几何计算出来的坐标 x3=x1+(x2-x1)/3; y3=y1+(y2-y1)/3; x4=x1+(x2-x1)*2/3; y4=y1+(y2-y1)*2/3; x5=x3+(y4-y3); y5=y3-(x4-x3); x6=x4-(y3-y4); y6=y4+(x3-x4); pDC->MoveTo(x1,y1); pDC->LineTo(x3,y3); pDC->MoveTo(x4,y4); pDC->LineTo(x2,y2); //递归最后一层,递归的出口 if(n==1) { pDC->MoveTo(x1,y1); pDC->LineTo(x3,y3); pDC->LineTo(x5,y5); pDC->LineTo(x6,y6); pDC->LineTo(x4,y4); } else { //递归图 Rect(pDC,x3,y3,x5,y5,n-1); Rect(pDC,x5,y5,x6,y6,n-1); Rect(pDC,x6,y6,x4,y4,n-1); } } //分形树的法,其中参数n是递归的层数 void Tree(CDC *pDC,int x1,int y1,int x2,int y2,int n) { //pDC是图的设备上下文的指针 //x1,y1,x2,y2是起始矩形坐标 //其中参数n是递归的层数 int x3,y3,x4,y4,x5,y5; //以下是根据空间几何计算出来的坐标 x3=x1+(x2-x1)/3; y3=y1+(y2-y1)/3; x4=x3+int((x1-x3)*cos(5*pi/6))-int((y1-y3)*sin(5*pi/6)); y4=y3+int((x1-x3)*sin(5*pi/6))+int((y1-y3)*cos(5*pi/6)); x5=x3+int((x1-x3)*cos(5*pi/6))+int((y1-y3)*sin(5*pi/6)); y5=y3-int((x1-x3)*sin(5*pi/6))+int((y1-y3)*cos(5*pi/6)); pDC->MoveTo(x1,y1); pDC->LineTo(x2,y2); //递归最后一层,递归的出口 if(n==1) { pDC->MoveTo(x3,y3); pDC->LineTo(x4,y4); pDC->MoveTo(x3,y3); pDC->LineTo(x5,y5); } else { //递归图 Tree(pDC,x3,y3,x2,y2,n-1); Tree(pDC,x3,y3,x4,y4,n-1); Tree(pDC,x3,y3,x5,y5,n-1); } }   上述的代码及图形附有Visual C++源代码,并在Windows XP和Visual C++6.0下调试成功。更多的分形图形图形坐标空间几何的计算方法请与作者联系。 最新评论 [发表评论] [文章投稿] 查看所有评论 推荐给好友 打印 改成sqrt(3.0)就好了,vs的问题,参数多类型重载没自己识别出来 ( maxint 发表于 2008-9-4 21:27:00) skinfeature界面产品特点介绍 SkinFeature完全支持各种常用控件及窗口 。对话框,单文档界面,多文档界面的全部支持。 完全支持PNG、TGA、bmp 图像格式。 支持皮肤(.rss)文件加密。保护美工图像不被别人非法使用,进一步保护自身知识产权。 支持从msstyle wba 等主题文件中自动转化为rss皮肤文件。 SkinFeature完全支持 VC,Delphi,C#,VB.Net,Visual Basic,C++ Bulider, PowerBuilder, Win32 SDK Supported WTL, ATL, 第三方厂商SDK, OUTLOOK 等等界面换肤。 支持各Windows平台 Windows 9X/NT/2000/2003/XP/Vista 完全支持ANSI UNICODE 文字编码格式。 完全支持动态换肤(*.rss),支持不规则窗体,支持美工设计自定义界面生成方案。 完全多线程,自定义窗口类换肤支持。 内含15种专业皮肤(.rss)文件。 内含SkinDesigner 皮肤文件开发工具。 http://www.skinfeature.com ( skinfeature 发表于 2008-6-18 17:30:00) change sqrt(3) to sqrt(3.0) ( Eric_wang 发表于 2007-10-30 9:59:00) x5=x3+(x4-x3)/2+int(sqrt(3)*(y4-y3)/2); y5=y3-int(sqrt(3)*(x4-x3)/2)+(y4-y3)/2; 运行是错误的啊? 错误 1 error C2668: 'sqrt' : ambiguous call to overloaded function d:\wordplay\c++\范例\fractral递归方法图形\stdafx.cpp 19 错误 2 fatal error C1903: unable to recover from previous error(s); stopping compilation d:\wordplay\c++\范例\fractral递归方法图形\stdafx.cpp 19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值