先概括一下深度学习的几大流行的框架:Pylearn2, Theano, Caffe, Torch, Cuda-covnet,Deeplarning4j等。
Theano是一个Python库,也是一个强大的数学表达式编译器。Pylearn2是在Theano基础上建立的机器学习库。用户可以用数学表达式写Pylearn2的插件(新的model, algorithm等), Theano将这些表达式进行优化和稳定化,然后进行编译。
Caffe是由Berkely Vision and Learning Center的贾杨清博士(毕业后在谷歌工作)主导开发的基于ConvNets和C++的深度学习库。Caffe允许网络模型和优化方法都定义在配置文件中而不需要写代码,可以很方便地在CPU和GPU之间切换。关于Caffe的更多介绍: 贾扬清:希望Caffe成为深度学习领域的Hadoop
Torch更偏向企业级应用,是用Lua写的,Facebook AI实验室和Google DeepMind团队等都使用Torch。可以为机器学习算法提供类似于Matlab的环境。Lua可以轻易地与C结合,任何C或者C++库都可以成为Lua库。OverFeat是用Torch7在ImageNet上训练得到的特征提取工具。
Cuda-convnet或者CuDNN是NVIDIA提供的基于GPU加速的深度学习工具,对主流的软件包括Caffe,Torch和Theano都提供支持。
Deeplarning4j面向商业应用,是基于Java的机器学习框架。更多介绍可阅读各自的网站或者阅读这篇 文章 。
Theano是一个Python库,也是一个强大的数学表达式编译器。Pylearn2是在Theano基础上建立的机器学习库。用户可以用数学表达式写Pylearn2的插件(新的model, algorithm等), Theano将这些表达式进行优化和稳定化,然后进行编译。
Caffe是由Berkely Vision and Learning Center的贾杨清博士(毕业后在谷歌工作)主导开发的基于ConvNets和C++的深度学习库。Caffe允许网络模型和优化方法都定义在配置文件中而不需要写代码,可以很方便地在CPU和GPU之间切换。关于Caffe的更多介绍: 贾扬清:希望Caffe成为深度学习领域的Hadoop
Torch更偏向企业级应用,是用Lua写的,Facebook AI实验室和Google DeepMind团队等都使用Torch。可以为机器学习算法提供类似于Matlab的环境。Lua可以轻易地与C结合,任何C或者C++库都可以成为Lua库。OverFeat是用Torch7在ImageNet上训练得到的特征提取工具。
Cuda-convnet或者CuDNN是NVIDIA提供的基于GPU加速的深度学习工具,对主流的软件包括Caffe,Torch和Theano都提供支持。
Deeplarning4j面向商业应用,是基于Java的机器学习框架。更多介绍可阅读各自的网站或者阅读这篇 文章 。