转眼间,大学毕业已七年之久。在这七年的工作学习的经历中,深刻体会到了线性代数这种数学工具的重要性,很多技术领域都有线性代数的身影。笔者从事的计算机行业更是与线性代数息息相关:机器学习、神经网络、图像处理、3D图形技术,科学计算等技术,都建立在线性代数理论的基础上。相对于其他数学分支来说,线性代数在工程实践中的应用更为广泛,打好线性代数的基础,对理工科学生来说非常重要。
在应试教育背景下,即使在大学通过了线代考试,也不能代表掌握了线代。应对考试,可以通过做题训练来完成。实际上,笔者对线代一直处于一知半解的状态。工作以后,笔者意识到,通过大学线代课程测试,只是第一步。理解线代的本质,掌握并熟练运用才是学习的终极目标,但实现这个目标并不容易。
线性代数属于高等数学。高等相对于初等数学,难度、复杂度都有较大提升。很多同学,包括笔者,对于这种难度跨度,可能会十分不适应。除了高等数学本身的难度外,还有教材因素,教学方式因素也会加重这种不适应。在这种情况下,很多同学可能会认为高等数学和初等数学几乎不相干,完全是两码事,其实不然。
相反地,高等数学是对初等数学的拓展、延伸。高等数学是如何对初等数学进行拓展延伸的,往往被数学课程忽略了。如何将高等数学知识和初等数学知识良好的衔接起来,也很少被重视。好的学习过程,就像是爬楼梯,新的知识总在已学知识的基础上拔高而来,每次学习新的知识,就像是跨上一层新的台阶。跨越一层一层小的台阶,最终就能攀登到一定的知识高度。如果新知识相对于已学知识拔高过多,同时又没有很好的过渡衔接,那么学习这种新知识就相当于让一个人从一楼直接跳跃到二楼,显然违反客观规律。所以,将高等数学和初等数学衔接起来,符合学习规律,能够有效降低高等数学的学习难度。这也是本教程所要实现的目标。
学习高等数学,不仅要做好知识衔接,还要优化学习过程。一些大学教材为了内容的严谨性,会使用较多的定义或公式来描述某些数学概念、数学特性。但定义或公式,并不适合初学者,更适合用作参考手册。初学者学习高等数学,更好的方式是先理解原理,再学习定义和特性。本教程将内容重心放在对线性代数的原理的讲解上,而将数学定义和数学公式排在后面。
本教程将采用简洁、通俗易懂的语言及逻辑风格,从初等数学中的基本概念出发,通过拓展、延伸、推导,逐步引导读者,认识线代,理解线代,掌握线代,力争成为每个人都能看得懂的线代教程。