这道题虽然是上一道题的增强,但是反而简单了。可以交易无数次,但是买卖必须成对的出现。
为了简单起见,我用abc三股股票来说明,且忽略掉相等的情况。三个数一共有六种大小关系。注意他们之间的先后顺序是不能乱的。
1. a<b<c。这种情况下的最大收益是c-a,c-a=(c-b)+(b-a)。连续的大于,依次算差,加起来就行了。
2. b<a<c。即中间那股小,最大收益是c-b,因为a入b出赔钱,a入c出收益少。
3. a<c<b。最大收益b-a.
4. b<c<a。最大收益c-b.
5. c<a<b。最大收益b-a。
6. c<b<a。最大收益0。
好的,你已经看出来了,只要当相邻的两个数是后面一个较大时,就之间累计上他们的差,否则,pass。直观一点的表述,只要有钱赚就立马出手,即使后面更贵,那也可以理解成前面的一次卖出后立马买入,最大的收益依然累积。对于不相邻的情况,其实跟相邻情况是完全一样的。
代码非常简单:
class Solution {
public:
int maxProfit(vector<int> &prices) {
if(prices.size() == 0)
return 0;
int res = 0;
for(int i=0;i<prices.size()-1;i++){
if(prices[i+1]>prices[i])
res += prices[i+1] - prices[i];
}
return res;
}
};