权重随机选举算法

3 篇文章 0 订阅
public class Weight {

	private TreeMap<Double, Integer> weightMap = new TreeMap<Double, Integer>();

    public WeightRandom(List<Person> list) {
        
//        if(Collections.) {
        	System.out.println("list can NOT be null");
//        }
        
        for (Person pair : list) {
            double lastWeight = this.weightMap.size() == 0 ? 0 : this.weightMap.lastKey().doubleValue();//统一转为double
            this.weightMap.put(pair.getWegiht().doubleValue() + lastWeight, pair.getEventId());//权重累加
        }
    }
 
    public Integer random() {
        double randomWeight = this.weightMap.lastKey() * Math.random();
        SortedMap<Double, Integer> tailMap = this.weightMap.tailMap(randomWeight, false);
        return this.weightMap.get(tailMap.firstKey());
    }
    }
private Map<String,Integer> serverMap = new HashMap<String,Integer>(){{
        put("192.168.1.100",1);
        put("192.168.1.101",1);
        put("192.168.1.102",4);
        put("192.168.1.103",1);
        put("192.168.1.104",1);
        put("192.168.1.105",3);
        put("192.168.1.106",1);
        put("192.168.1.107",2);
        put("192.168.1.108",1);
        put("192.168.1.109",1);
        put("192.168.1.110",1);
    }};

    private List<String> servers = new ArrayList<>(serverMap.keySet());

实现一

public void weightRandom(){
        Set<String> keySet = serverMap.keySet();
        List<String> servers = new ArrayList<String>();
        for(Iterator<String> it = keySet.iterator();it.hasNext();){
            String server = it.next();
            int weight = serverMap.get(server);
            for(int i=0;i<weight;i++){
                servers.add(server);
            }
        }
        String server = null;
        Random random = new Random();
        int idx = random.nextInt(servers.size());
        server = servers.get(idx);
        System.out.println(server);
    }

实现二

public String randomWeight(){
        int length = serverMap.size(); // 总个数
        int totalWeight = 0; // 总权重
        boolean sameWeight = true; // 权重是否都一样
        for (int i = 0; i < length; i++) {
            int weight = serverMap.get(servers.get(i));
            totalWeight += weight; // 累计总权重
            if (sameWeight && i > 0
                    && weight != serverMap.get(servers.get(i-1))) {
                sameWeight = false; // 计算所有权重是否一样
            }
        }
        if (totalWeight > 0 && ! sameWeight) {
            // 如果权重不相同且权重大于0则按总权重数随机
            int offset = ThreadLocalRandom.current().nextInt(totalWeight);
            // 并确定随机值落在哪个片断上
            for (int i = 0; i < length; i++) {
                offset -= serverMap.get(servers.get(i));
                if (offset < 0) {
                    return servers.get(i);
                }
            }
        }
        // 如果权重相同或权重为0则均等随机
        return servers.get(ThreadLocalRandom.current().nextInt(length));
    }

Dubbo中基于权重的随机算法

dubbo的源码地址:https://github.com/alibaba/dubbo

Dubbo中的RandomLoadBalance采用基于权重的随机算法,主要代码如下:

public class RandomLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "random";

    private final Random random = new Random();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size(); // Number of invokers
        int totalWeight = 0; // The sum of weights
        boolean sameWeight = true; // Every invoker has the same weight?
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; // Sum
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false;
            }
        }
        if (totalWeight > 0 && !sameWeight) {
            // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
            int offset = random.nextInt(totalWeight);
            // Return a invoker based on the random value.
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        // If all invokers have the same weight value or totalWeight=0, return evenly.
        return invokers.get(random.nextInt(length));
    }

}

解说:
数学分析

1)假设有四个集群节点A,B,C,D,对应的权重分别是1,2,3,4,那么请求到A节点的概率就为1/(1+2+3+4) = 10%.B,C,D节点依次类推为20%,30%,40%.

2)虽然这个随机算法理解起来是比较容易的,面试一般不会问这个,但是假如我们要实现类似的功能,他这个代码实现的思路还是很优雅的,非常具有借鉴意义.他这个实现思路从纯数学角度是很好理解的,我们还是按照上面数学分析中的前提条件.我们知道总权重为10(1+2+3+4),那么怎么做到按权重随机呢?根据10随机出一个整数,假如为随机出来的是2.然后依次和权重相减,比如2(随机数)-1(A的权重) = 1,然后1(上一步计算的结果)-2(B的权重) = -1,此时-1 < 0,那么则调用B,其他的以此类推

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值