Dubbo线程模型

 戳蓝字「TopCoder」关注我们哦!

Dubbo中线程池的应用还是比较广泛的,按照consumer端到provider的RPC的方向来看,consumer端的应用业务线程到netty线程、consuemr端dubbo业务线程池,到provider端的netty boss线程、worker线程和dubbo业务线程池等。这些线程各司其职相互配合,共同完成dubbo RPC服务调用,理解dubbo线程模型对于学习Dubbo原理很有帮助。

dubbo线程模型包括线程模型策略和dubbo线程池策略两个方面,下面就依次进行分析。

dubbo线程模型

Dubbo默认的底层网络通信使用的是Netty,服务提供方NettyServer使用两级线程池,其中EventLoopGroup(boss)主要用来接收客户端的链接请求,并把完成TCP三次握手的连接分发给EventLoopGroup(worker)来处理,注意把boss和worker线程组称为I/O线程,前者处理IO连接事件,后者处理IO读写事件。

设想下,dubbo provider端的netty IO线程是如何处理业务逻辑呢?如果处理逻辑较为简单,并且不会发起新的I/O请求,那么直接在I/O线程上处理会更快,因为这样减少了线程池调度与上下文切换的开销,毕竟线程切换还是有一定成本的。如果逻辑较为复杂,或者需要发起网络通信,比如查询数据库,则I/O线程必须派发请求到新的线程池进行处理,否则I/O线程会被阻塞,导致处理IO请求效率降低。

那Dubbo是如何做的呢?

Dubbo中根据请求的消息类是直接被I/O线程处理还是被业务线程池处理,Dubbo提供了下面几种线程模型:

  • all(AllDispatcher类):所有消息都派发到业务线程池,这些消息包括请求、响应、连接事件、断开事件等,响应消息会优先使用对于请求所使用的线程池。

  • direct(DirectDispatcher类):所有消息都不派发到业务线程池,全部在IO线程上直接执行。

  • message(MessageOnlyDispatcher类):只有请求响应消息派发到业务线程池,其他消息如连接事件、断开事件、心跳事件等,直接在I/O线程上执行。

  • execution(ExecutionDispatcher类):只把请求类消息派发到业务线程池处理,但是响应、连接事件、断开事件、心跳事件等消息直接在I/O线程上执行。

  • connection(ConnectionOrderedDispatcher类):在I/O线程上将连接事件、断开事件放入队列,有序地逐个执行,其他消息派发到业务线程池处理。

dubbo线程池可选模型较多,下面以DirectDispatcher类进行分析,其他流程类似就不在赘述。

public class DirectChannelHandler extends WrappedChannelHandler {
    @Override
    public void received(Channel channel, Object message) throws RemotingException {
        ExecutorService executor = getPreferredExecutorService(message);
        if (executor instanceof ThreadlessExecutor) {
            try {
                executor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
            } catch (Throwable t) {
                throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
            }
        } else {
            handler.received(channel, message);
        }
    }
}

DirectDispatcher类重写了received方法,注意 ThreadlessExecutor 被应用在调用 future.get() 之前,先调用 ThreadlessExecutor.wait(),wait 会使业务线程在一个阻塞队列上等待,直到队列中被加入元素。很明显,provider侧调用getPreferredExecutorService(message)返回的不是ThreadlessExecutor,所以会在当前IO线程执行执行。

其他事件,比如连接、异常、断开等,都是在WrappedChannelHandler中默认实现:执行在当前IO线程中执行的,代码如下:

@Override
public void connected(Channel channel) throws RemotingException {
    handler.connected(channel);
}
@Override
public void disconnected(Channel channel) throws RemotingException {
    handler.disconnected(channel);
}
@Override
public void sent(Channel channel, Object message) throws RemotingException {
    handler.sent(channel, message);
}
@Override
public void caught(Channel channel, Throwable exception) throws RemotingException {
    handler.caught(channel, exception);
}

dubbo线程模型策略

了解了dubbo线程模型之后,小伙伴是不是该问:

既然有那么多的线程模型策略,dubbo线程模型具体使用的是什么策略呢?

从netty启动流程来看,初始化NettyServer时会进行加载具体的线程模型,代码如下:

public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
    super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
}
public static ChannelHandler wrap(ChannelHandler handler, URL url) {
    return ChannelHandlers.getInstance().wrapInternal(handler, url);
}
protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
    return new MultiMessageHandler(new HeartbeatHandler(ExtensionLoader.getExtensionLoader(Dispatcher.class)
            .getAdaptiveExtension().dispatch(handler, url)));
}

这里根据URL里的线程模型来选择具体的Dispatcher实现类。在此,我们再提一下Dubbo提供的Dispatcher实现类,其默认的实现类是all,也就是AllDispatcher类。既然Dispatcher是通过SPI方式加载的,也就是用户可以自定义自己的线程模型,只需实现Dispatcher类然后配置选择使用自定义的Dispatcher类即可。

dubbo线程池策略

dubbo处理流程,为了尽量早地释放Netty的I/O线程,某些线程模型会把请求投递到线程池进行异步处理,那么这里所谓的线程池是什么样的线程池呢?

其实这里的线程池ThreadPool也是一个扩展接口SPI,Dubbo提供了该扩展接口的一些实现,具体如下:

  • FixedThreadPool:创建一个具有固定个数线程的线程池。

  • LimitedThreadPool:创建一个线程池,这个线程池中的线程个数随着需要量动态增加,但是数量不超过配置的阈值。另外,空闲线程不会被回收,会一直存在。

  • EagerThreadPool:创建一个线程池,在这个线程池中,当所有核心线程都处于忙碌状态时,将创建新的线程来执行新任务,而不是把任务放入线程池阻塞队列。

  • CachedThreadPool:创建一个自适应线程池,当线程空闲1分钟时,线程会被回收;当有新请求到来时,会创建新线程。

知道了这些线程池之后,那么是什么时候进行SPI加载对应的线程池实现呢?具体是在dubbo 线程模型获取对应线程池时进行SPI加载的,具体逻辑在方法 org.apache.dubbo.common.threadpool.manager.DefaultExecutorRepository#createExecutor中:

private ExecutorService createExecutor(URL url) {
    return (ExecutorService) ExtensionLoader.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url);
}
@SPI("fixed")
public interface ThreadPool {
    @Adaptive({THREADPOOL_KEY})
    Executor getExecutor(URL url);
}

从代码来看,默认的线程池策略是fixed模式的线程池,其coreSize默认为200,队列大小为0,其代码如下:

public class FixedThreadPool implements ThreadPool {
    @Override
    public Executor getExecutor(URL url) {
        String name = url.getParameter(THREAD_NAME_KEY, DEFAULT_THREAD_NAME);
        int threads = url.getParameter(THREADS_KEY, DEFAULT_THREADS);
        int queues = url.getParameter(QUEUES_KEY, DEFAULT_QUEUES);
        return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS,
                queues == 0 ? new SynchronousQueue<Runnable>() :
                        (queues < 0 ? new LinkedBlockingQueue<Runnable>()
                                : new LinkedBlockingQueue<Runnable>(queues)),
                new NamedInternalThreadFactory(name, true), new AbortPolicyWithReport(name, url));
    }
}

注:其他线程池策略和FixedThreadPool类似,只不过线程池参数不同而已,这里不再赘述。

小结

从dubbo提供的几种线程模型和线程池策略来看,基本上能满足绝大多数场景的需求了,由于dubbo线程模型和线程池策略都是通过SPI的方式进行加载的,因此如果业务上需要,我们完全可以自定义对应的线程模型和线程池策略,只需要配置下即可。

 推荐阅读 


欢迎小伙伴关注【TopCoder】阅读更多精彩好文。

### 回答1: dubboconsumer线程模型Dubbo框架中用于处理消费者请求的线程模型。它采用的是线程模型,当有请求到达时,线程池会从中选取一个线程进行处理,处理完毕后线程会返回线程池中等待下一次请求。 然而,由于线程池的大小是有限的,如果在高并发的情况下,线程池中的线程已经全部被占用,新的请求将会被阻塞,导致系统的响应时间变慢甚至出现系统崩溃的情况。因此,在使用dubboconsumer线程模型时,需要合理配置线程池的大小,以及采用合适的线程池拒绝策略来避免这些问题。 ### 回答2: Dubbo是一种分布式服务框架,它采用了服务提供者和服务消费者的模式,通过RPC调用实现不同服务间的通信。在Dubbo中,consumer线程模型是负责处理服务消费者请求的。然而,这个线程模型也存在一些问题。 首先,dubbo consumer线程模型默认采用了单一的线程池来处理所有的请求,这意味着所有的请求都依赖于一个线程来处理。当请求量较大时,这个线程池可能会出现饱和的情况,导致请求无法及时得到处理。 其次,由于单一线程模型的设计,当某个请求发生阻塞的情况时,整个线程池可能会被阻塞。这会导致其他请求也无法得到处理,从而降低系统的吞吐量和并发性能。 另外,单一线程模型还存在资源共享的问题。由于所有的请求都依赖于同一个线程池,不同的请求可能会在同一时间访问共享的资源,这会带来并发冲突的问题,可能导致数据不一致性或者资源竞争的情况。 为了解决这些问题,Dubbo推出了可选的线程模型,包括线程池和消息队列等。这些线程模型可以根据实际需求来选择,以提高系统的吞吐量和并发性能。同时,也可以通过调整线程池的参数来优化系统的资源利用率和响应时间。 总之,Dubbo consumer线程模型存在着单一线程池饱和、阻塞和资源共享等问题。然而,通过选择合适的线程模型和优化参数,可以提高Dubbo的性能和可靠性。 ### 回答3: dubbo consumer线程模型存在以下几个问题: 首先,dubbo consumer线程模型采用的是单一线程模型,即每个Consumer服务仅使用一个线程来处理所有的请求。这种模式在面对高并发请求时会存在性能瓶颈,请求过多时可能会造成线程无法及时处理请求,导致请求堆积或被丢弃。 其次,单一线程模型也存在单点故障的风险。如果Consumer线程出现异常或崩溃,会导致整个服务不可用,无法正常提供服务。此外,由于只有一个线程在处理请求,如果这个线程发生死锁或长时间阻塞,会导致整个应用的性能下降或不可用。 此外,单一线程模型也不适用于多核处理器的优势。在现代机器硬件上,多核处理器能够更好地利用并发处理能力。单一线程模型无法充分发挥多核处理器的能力,导致性能无法提升。 最后,单一线程模型也不便于扩展。当需要增加Consumer的处理能力时,无法简单地通过增加线程数来实现,需要重新设计和实现线程模型。 为了解决这些问题,可以考虑使用多线程模型,将请求分发给多个线程并行处理,提高系统的并发处理能力和性能。同时,可以引入线程池机制来复用线程资源,避免频繁地创建和销毁线程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值