探 寻 宝 藏
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物。某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角。当然,迷宫中的通路不是平坦的,到处都是陷阱。Dr.Kong决定让他的机器人卡多去探险。
但机器人卡多从左上角走到右下角时,只会向下走或者向右走。从右下角往回走到左上角时,只会向上走或者向左走,而且卡多不走回头路。(即:一个点最多经过一次)。当然卡多顺手也拿走沿路的每个宝物。
Dr.Kong希望他的机器人卡多尽量多地带出宝物。请你编写程序,帮助Dr.Kong计算一下,卡多最多能带出多少宝物。-
输入
-
第一行: K 表示有多少组测试数据。
接下来对每组测试数据:
第1行: M N
第2~M+1行: Ai1 Ai2 ……AiN (i=1,…..,m)
【约束条件】
2≤k≤5 1≤M, N≤50 0≤Aij≤100 (i=1,….,M; j=1,…,N)
所有数据都是整数。 数据之间有一个空格。
输出
- 对于每组测试数据,输出一行:机器人卡多携带出最多价值的宝物数 样例输入
-
2
-
2 3
-
0 10 10
-
10 10 80
-
3 3
-
0 3 9
-
2 8 5
-
5 7 100
样例输出
-
120
-
134
-
双线程动态规划!
-
利用四维数组求解!
-
AC码:
-
#include<stdio.h> #include<string.h> int num[55][55],dp[55][55][55][55]; int max(int a,int b) { return a>b?a:b; } int main() { int T,m,n,i,j,p,q,result; scanf("%d",&T); while(T--) { scanf("%d%d",&m,&n); memset(dp,0,sizeof(dp)); for(i=1;i<=m;i++) { for(j=1;j<=n;j++) { scanf("%d",&num[i][j]); } } for(i=1;i<=m;i++) { for(j=1;j<=n;j++) { for(p=i+1;p<=m;p++) { q=i+j-p; if(q<=0) break; dp[i][j][p][q]=max(max(dp[i-1][j][p-1][q],dp[i][j-1][p][q-1]),max(dp[i-1][j][p][q-1],dp[i][j-1][p-1][q])); dp[i][j][p][q]=dp[i][j][p][q]+num[i][j]+num[p][q]; } } } result=max(max(dp[m-1][n][m-1][n],dp[m][n-1][m][n-1]),max(dp[m-1][n][m][n-1],dp[m][n-1][m-1][n])); printf("%d\n",result+num[m][n]); } return 0; }
-
第一行: K 表示有多少组测试数据。