nyoj 712 探寻宝藏

探 寻 宝 藏

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 5
描述

传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物。某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角。当然,迷宫中的通路不是平坦的,到处都是陷阱。Dr.Kong决定让他的机器人卡多去探险。

但机器人卡多从左上角走到右下角时,只会向下走或者向右走。从右下角往回走到左上角时,只会向上走或者向左走,而且卡多不走回头路。(即:一个点最多经过一次)。当然卡多顺手也拿走沿路的每个宝物。

Dr.Kong希望他的机器人卡多尽量多地带出宝物。请你编写程序,帮助Dr.Kong计算一下,卡多最多能带出多少宝物。
输入
第一行: K 表示有多少组测试数据。 
接下来对每组测试数据:
第1行: M N
第2~M+1行: Ai1 Ai2 ……AiN (i=1,…..,m)


【约束条件】
2≤k≤5 1≤M, N≤50 0≤Aij≤100 (i=1,….,M; j=1,…,N)
所有数据都是整数。 数据之间有一个空格。
输出
对于每组测试数据,输出一行:机器人卡多携带出最多价值的宝物数
样例输入
2
2 3
0 10 10
10 10 80
3 3
0 3 9
2 8 5
5 7 100
样例输出
120
134
双线程动态规划!
利用四维数组求解!
AC码:
#include<stdio.h>
#include<string.h>
int num[55][55],dp[55][55][55][55];
int max(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	int T,m,n,i,j,p,q,result;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&m,&n);
		memset(dp,0,sizeof(dp));
		for(i=1;i<=m;i++)
		{
			for(j=1;j<=n;j++)
			{
				scanf("%d",&num[i][j]);
			}
		}
		for(i=1;i<=m;i++)
		{
			for(j=1;j<=n;j++)
			{
				for(p=i+1;p<=m;p++)
				{
					q=i+j-p;
					if(q<=0)
						break;
					dp[i][j][p][q]=max(max(dp[i-1][j][p-1][q],dp[i][j-1][p][q-1]),max(dp[i-1][j][p][q-1],dp[i][j-1][p-1][q]));
					dp[i][j][p][q]=dp[i][j][p][q]+num[i][j]+num[p][q];
				}
			}
		}
		result=max(max(dp[m-1][n][m-1][n],dp[m][n-1][m][n-1]),max(dp[m-1][n][m][n-1],dp[m][n-1][m-1][n]));
		printf("%d\n",result+num[m][n]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值