探 寻 宝 藏
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物。某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角。当然,迷宫中的通路不是平坦的,到处都是陷阱。Dr.Kong决定让他的机器人卡多去探险。
但机器人卡多从左上角走到右下角时,只会向下走或者向右走。从右下角往回走到左上角时,只会向上走或者向左走,而且卡多不走回头路。(即:一个点最多经过一次)。当然卡多顺手也拿走沿路的每个宝物。
Dr.Kong希望他的机器人卡多尽量多地带出宝物。请你编写程序,帮助Dr.Kong计算一下,卡多最多能带出多少宝物。-
输入
-
第一行: K 表示有多少组测试数据。
接下来对每组测试数据:
第1行: M N
第2~M+1行: Ai1 Ai2 ……AiN (i=1,…..,m)
【约束条件】
2≤k≤5 1≤M, N≤50 0≤Aij≤100 (i=1,….,M; j=1,…,N)
所有数据都是整数。 数据之间有一个空格。
输出
- 对于每组测试数据,输出一行:机器人卡多携带出最多价值的宝物数 样例输入
-
2
2 3
0 10 10
10 10 80
3 3
0 3 9
2 8 5
5 7 100
样例输出
-
120
134
这是双进程DP问题,首先,假设出发点为A 终点为B 那么,根据题目给出的条件,可以推出A->B的动态转移方程为 dp[i][j] = max(dp[i-1][j],dp[i][j-1]) + a[i][j]; 由于,同理可得B的情况,那么,题目的意思是A->B 然后 B -> A我们可以假设同时从A点出发,得到两条不同路径,这个是一样的效果。所以,我们可以得到一个动态转移方程
dp[i][j][p][q] = max(dp[i-1][j][p-1][q],dp[i-1][j][p][q],dp[i][j-1][p-1][q],dp[i][j-1][p][q-1]) 因为 每次只能移动一步,即 i+1 或j+1 那么 i+j是移动的步数 因为从A点开始移动的,经过相同的步数,肯定能得到i+j = p+q
还有一点要注意一下,这题与NYOJ 61是同类问题,但是,有一点细节要注意,最后终点的值也要算上,上面的动态方程得到的值不包含两个A 和 B的值,因为 A是起点,所以,他的值一般是0,所以,得到最后的结果应该是 int sum = max(dp[m-1][n][m-1][n],dp[m-1][n][m][n-1],dp[m][n-1][m-1][n],dp[m][n-1][m][n-1]) + a[m][n]; 这题已经AC了,下面是具体代码:#include "stdio.h" #include "string.h" #define max(x,y) ((x) > (y) ? (x) : (y)) int a[52][52]; int dp[52][52][52][52]; int main(int argc, char const *argv[]) { int k,n,m,i,j,p,q; scanf("%d",&k); while(k--) { scanf("%d%d",&m,&n); for(i = 1; i <= m; i++) for(j = 1; j <= n; j++) scanf("%d",&a[i][j]); memset(dp,0,sizeof(dp)); for(i = 1; i <= m; i++) for(j = 1; j <= n; j++) for(p = i+1; p <= m; p++) { q = i+j-p; if(q <= 0) continue; dp[i][j][p][q] = max(max(dp[i-1][j][p-1][q],dp[i][j-1][p][q-1]), max(dp[i-1][j][p][q-1],dp[i][j-1][p-1][q])) + a[i][j] + a[p][q]; } int sum = max(max(dp[m-1][n][m-1][n],dp[m-1][n][m][n-1]), max(dp[m][n-1][m-1][n],dp[m][n-1][m][n-1])); printf("%d\n",sum+a[m][n]); } return 0; }
-
第一行: K 表示有多少组测试数据。