LeetCode - Median of Two Sorted Arrays

Question:

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

在没有考虑效率的前提下:

public static void main(String[] args) {
	 // TODO Auto-generated method stub
	 int A[] = {1,2,7};
	 int B[] = {4,5};
	 double median = findMedianSortedArrays(A, 3, B, 2);
	 System.out.println(median);
	
	 }
	
	 public static double findMedianSortedArrays(int A[], int m, int B[], int
	 n) {
	 double median = -1;
	 if (m < 1 && n < 1) {
	 return -1;
	 }
	 if (m < 1 && n >=1) {
	 if (n % 2 != 0) {
	 median = B[(n - 1)/2];
	 }
	 else {
	 median = (B[n/2] + B[n/2-1]) / 2.0;
	 }
	 return median;
	 }
	 if (m >=1 && n < 1) {
	 if (m % 2 != 0) {
	 median = A[(m - 1)/2];
	 }
	 else {
	 median = (A[m/2] + A[m/2-1]) / 2.0;
	 }
	 return median;
	 }
	 int total = m + n;
	 if (total % 2 != 0) {
	 int mindex = (total - 1) / 2;
	 int k = 0;
	 int i = 0, j = 0;
	 while (k < mindex) {
	 if (A[i] < B[j]) {
	 i++;
	 }
	 else{
	 j++;
	 }
	 k++;
	 }
	 if (A[i] < B[j]) {
	 median = A[i];
	 return median;
	 }
	 else{
	 median = B[j];
	 return median;
	 }
	 }
	 if (total % 2 == 0) {
	 int mindex = total / 2;
	 int k = 0;
	 int i = 0, j = 0;
	 while (k < mindex-1) {
	 if (A[i] < B[j]) {
	 i++;
	 }
	 else{
	 j++;
	 }
	 k++;
	 }
	 median = (A[i] + B[j]) / 2.0;
	 return median;
	 }
	
	 return median;
	
	 }

参考网上代码及分析如下:
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。




证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。




当A[k/2-1]>B[k/2-1]时存在类似的结论。




当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

public double findMedianSortedArrays(int A[], int B[]) {
		// IMPORTANT: Please reset any member data you declared, as
		// the same Solution instance will be reused for each test case.
		int m = A.length;
		int n = B.length;
		int total = m + n;
		if ((total & 0x01) != 0) {
			return find_kth(A, m, B, n, total / 2 + 1);
		} else {
			return (find_kth(A, m, B, n, total / 2) + find_kth(A, m, B, n,
					total / 2 + 1)) / 2.0;
		}
	}

	public double find_kth(int A[], int m, int B[], int n, int k) {
		if (m > n) {
			return find_kth(B, n, A, m, k);
		}
		if (m == 0) {
			return B[k - 1];
		}
		if (k == 1) {
			return Math.min(A[0], B[0]);
		}

		int pa = Math.min(k / 2, m);
		int pb = k - pa;
		if (A[pa - 1] < B[pb - 1]) {
			return find_kth(Arrays.copyOfRange(A, pa, A.length), m - pa, B, n,
					k - pa);
		} else if (A[pa - 1] > B[pb - 1]) {
			return find_kth(A, m, Arrays.copyOfRange(B, pb, B.length), n - pb,
					k - pb);
		} else {
			return A[pa - 1];
		}
	}

	public static void main(String[] args) {
		int[] A = { 1, 3};
		int[] B = { 2, 4, 5};
		Leetcode2 slt = new Leetcode2();
		double result = slt.findMedianSortedArrays(A, B);
		System.out.println(result);
	}


可以使用二分查找算法来解决这个问题。 首先,我们可以将两个数组合并成一个有序数组,然后求出中位数。但是,这个方法的时间复杂度为 $O(m + n)$,不符合题目要求。因此,我们需要寻找一种更快的方法。 我们可以使用二分查找算法在两个数组中分别找到一个位置,使得这个位置将两个数组分成的左右两部分的元素个数之和相等,或者两部分的元素个数之差不超过 1。这个位置就是中位数所在的位置。 具体来说,我们分别在两个数组中二分查找,假设现在在第一个数组中找到了一个位置 $i$,那么在第二个数组中对应的位置就是 $(m + n + 1) / 2 - i$。如果 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m$ 个,或者 $i$ 左边的元素个数加上 $(m + n + 1) / 2 - i$ 左边的元素个数等于 $m + 1$ 个,则这个位置就是中位数所在的位置。 具体的实现可以参考以下 Java 代码: ```java public double findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length, n = nums2.length; if (m > n) { // 保证第一个数组不大于第二个数组 int[] tmp = nums1; nums1 = nums2; nums2 = tmp; int t = m; m = n; n = t; } int imin = 0, imax = m, halfLen = (m + n + 1) / 2; while (imin <= imax) { int i = (imin + imax) / 2; int j = halfLen - i; if (i < imax && nums2[j - 1] > nums1[i]) { imin = i + 1; // i 太小了,增大 i } else if (i > imin && nums1[i - 1] > nums2[j]) { imax = i - 1; // i 太大了,减小 i } else { // i 是合适的位置 int maxLeft = 0; if (i == 0) { // nums1 的左边没有元素 maxLeft = nums2[j - 1]; } else if (j == 0) { // nums2 的左边没有元素 maxLeft = nums1[i - 1]; } else { maxLeft = Math.max(nums1[i - 1], nums2[j - 1]); } if ((m + n) % 2 == 1) { // 总元素个数是奇数 return maxLeft; } int minRight = 0; if (i == m) { // nums1 的右边没有元素 minRight = nums2[j]; } else if (j == n) { // nums2 的右边没有元素 minRight = nums1[i]; } else { minRight = Math.min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 $O(\log\min(m, n))$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值