深度学习时代的图模型,清华发文综述图网络

选自arXiv 作者:张子威、崔鹏、朱文武 参与:路、晓坤 深度学习在多个领域中实现成功,如声学、图像和自然语言处理。但是,将深度学习应用于普遍存在的图数据仍然存在问题,这是由于图数据的独特特性。近期,该领域出现大量研究,极大地提升了图分析技术。清华大学朱文武等人综述了应用于图的不同深度学...

2019-02-18 15:39:53

阅读数 47

评论数 0

从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)

博客刷不出来图的,去知乎地址吧,没图不好懂的。https://www.zhihu.com/question/54504471/answer/332657604 1 什么是离散卷积?CNN中卷积发挥什么作用? 了解GCN之前必须对离散卷积(或者说CNN中的卷积)有一个明确的认识: 如何通俗易懂地解...

2019-02-17 12:20:49

阅读数 49

评论数 0

Ubuntu 16.04 安装 Docker和默认存储路径修改

docker的安装并不复杂,网上有很多可参考的教程,这里记录下我的安装步骤和docker 镜像存储路径的配置方法,仅供参考。 一、安装docker Step1:检查安装环境是否满足docker安装要求 检查kernel内核是否在3.10以上:~$ uname -a Linux dlserve...

2019-02-11 17:53:20

阅读数 38

评论数 0

android build类分析 hook静态字段

一、缘由:  使用xposed hook build类下 DEVICE MODEL VERSION MANUFACTURER等静态字段 使用XposedHelpers.setStaticObjectField() hook 失败! XposedHelpers.setStaticObjectFi...

2019-01-23 16:46:39

阅读数 64

评论数 0

在Android so文件的.init、.init_array上和JNI_OnLoad处下断点

移动端Android安全的发展,催生了各种Android加固的诞生,基于ELF文件的特性,很多的加固厂商在进行Android逆向的对抗的时,都会在Android的so文件中进行动态的对抗,对抗的点一般在so文件的.init段和JNI_OnLoad处。因此,我们在逆向分析各种厂商的加固so时,需要在...

2019-01-22 15:47:00

阅读数 32

评论数 0

GPS轨迹数据集免费下载资源整理

本文主要是整理了GPS轨迹数据集免费资源库,从这些库中能够免费下载到GPS数据,同时还整理出了这些数据的格式,数据集的简单描述等等。如果你发现更好的相关数据资源,欢迎共享 :) 1. GeoLife GPS Trajectories 该GPS轨迹数据集出自微软研究GeoLift项目。从2007年...

2018-12-13 19:00:46

阅读数 173

评论数 0

https://blog.csdn.net/codezjx/article/details/8872090

FBI Warning:欢迎转载,但请标明出处:http://blog.csdn.net/codezjx/article/details/8872090,未经本人同意请勿用于商业用途,感谢支持! 前言:最近在找Android上的全局代理软件来用,然后发现了这两款神作,都是外国的软件,而且都是开源...

2018-11-27 23:01:14

阅读数 205

评论数 0

快速了解GCN(图卷积神经网络)

如何理解 Graph Convolutional Network(GCN)? https://www.zhihu.com/question/54504471  推荐初学者可以先从知乎的这个问题出发,点赞最多的《从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)》 该篇文章非常详...

2018-11-27 14:40:48

阅读数 666

评论数 1

如何理解 Graph Convolutional Network(GCN)?

作者:superbrother 链接:https://www.zhihu.com/question/54504471/answer/332657604 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。   从CNN到GCN的联系与区别——GCN从入门到精(fang...

2018-11-27 14:10:24

阅读数 521

评论数 0

Flask+Gunicorn+Gevent+Supervisor+Nginx生产环境部署

  老毛病了,在用某个新框架或新架构之前,总得花时间谷歌和自己折腾一番,才能知道这个框架和架构的优缺点,才会发现自己最喜欢、用的最顺手的的一种。近期在学习python,这里记录一下自己用的一套python web开发的部署环境。 简介   之所以选择Flask,而没选择用的最多的django,...

2018-10-19 02:26:36

阅读数 177

评论数 0

基于landmark的疲劳检测

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。 1、首先是检测眨眼,可以通过landmark点的标号直接定位眼睛位置,经实验验证,该一系列的点能够准确定位。下面重点分析...

2018-09-05 10:27:31

阅读数 397

评论数 0

多目标跟踪综述:Multiple Object Tracking: A Literature Review

原文链接(每年都会更新,现在是v4,2017年5月):Multiple Object Tracking: A Literature Review   摘要 多目标跟踪因其学术和商业潜力,在计算机视觉中逐渐备受关注。尽管如今已经有多种多样的方法来处理这个课题,但诸如目标重叠、外观剧变等问题仍然...

2018-07-24 14:35:21

阅读数 312

评论数 0

python与zmq系列(6)

现在,你已经熟练的掌握了REQ/REP模式,它是一个一对多的模式,一个REP对应多个REQ。         但是现实工作中,我们会遇到这样的难题,一个REP无法满足REQ的提问,因为REQ太多了,虽然可以增加一个REP,但是,这样做会带来很多问题。两个REP的端口不可能是一个,那么就需要将原来...

2018-07-24 10:37:25

阅读数 635

评论数 0

ZeroMQ(java)之负载均衡

我们在实际的应用中最常遇到的场景如下: A向B发送请求,B向A返回结果。。。。 但是这种场景就会很容易变成这个样子: 很多A向B发送请求,所以B要不断的处理这些请求,所以就会很容易想到对B进行扩展,由多个B来处理这些请求,那么这里就出现了另外一个问题: B对请求处理的速度可能不同,...

2018-07-24 10:11:05

阅读数 213

评论数 0

利用ZeroMQ传输图片

待传输的数据 cv::Mat mat 订阅端(sub) import cv2 import zmq sub_port = 6666 context = zmq.Context() #connect to socket we subscrib socket_sub = context.so...

2018-07-22 17:23:05

阅读数 293

评论数 0

目标检测 (Object Detection) 算法汇集

基于深度学习的目标检测综述(一)(2018年03月16日)  图像分类,检测及分割是计算机视觉领域的三大任务。图像分类模型(详情见这里)是将图像划分为单个类别,通常对应于图像中最突出的物体。但是现实世界的很多图片通常包含不只一个物体,此时如果使用图像分类模型为图像分配一个单一标签其实是非常粗糙的,...

2018-07-19 12:24:06

阅读数 701

评论数 0

DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比

GAN系列学习(2)——前生今世   本文已投稿至微信公众号--机器学习算法工程师,欢迎关注 1 2        本文是GAN系列学习–前世今生第二篇,在第一篇中主要介绍了GAN的原理部分,在此篇文章中,主要总结了常用的GAN包括DCGAN,WGAN,WGAN-GP,LS...

2018-07-18 12:07:17

阅读数 155

评论数 0

Focal Loss论文阅读笔记

Focal Loss for Dense Object Detection引入问题目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-stage的效果好,one-stag...

2018-06-15 16:57:21

阅读数 183

评论数 0

一个图的连通子图个数

问题描述:给出一个无向图,输出图中连通分支的个数。无向图的连通分支是一个子图,因此在子图两个节点之间至少存在一个路径。 输入:给出一个连通图的二维数组0100010100010000000000000输出:联通子图的个数思路:从二位数组的第一行开始遍历,只遍历上三角(因为无向图是对称的),遍历第i...

2018-06-15 16:56:05

阅读数 958

评论数 0

机器学习中正则化项L1和L2的直观理解

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函...

2018-06-15 16:45:29

阅读数 253

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭