HLG 1644 比较多个大数的大小

链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1644

题目大意:

本题有多组测试数据,每组测试数据占n+1行。
第一行输入一个数字n (1 ≤ n ≤ 100),表示正整数的个数,接下来n行每行输入一个正整数,每个正整数不超过10^100。

每组测试数据输出占n行,按照从小到大的顺序输出;


分析:比较多个大数的大小,首先想到要用字符串来表示每一个数,然后根据每个数的长度排序,长度相等的则比较每一个数字字符的大小;


解题代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;

typedef struct Node_ {
    char Num[1005];
    int len;
}Node;

Node N[105];

int cmp(const void *a, const void *b) {
    Node *p1 = (Node *)a;
    Node *p2 = (Node *)b;
    if(p1->len != p2->len) {
        return p1->len - p2->len;
    }else {
        return strcmp(p1->Num, p2->Num);
    }
}

int main() {
    int n;
    while(~scanf("%d", &n)) {
        for(int i=0; i<n; i++) {
            scanf("%s", N[i].Num);
            N[i].len = strlen(N[i].Num);
        }
        qsort(N, n, sizeof(N[0]), cmp);
        for(int i=0; i<n; i++) {
            printf("%s\n", N[i].Num);
        }
    }
    return 0;
}

后续解法待续。。。。


引用:OpenCvSharp是一个OpenCV的.Net wrapper,用于开发基于OpenCV的应用程序,它与原始的OpenCV更接近,并提供了详细的使用样例。 引用:对于使用OpenCV进行图像处理的代码示例,可以使用import numpy as np import cv2来导入OpenCV库,并使用cv2.imread、cv2.imshow等函数进行图像的读取和显示。 引用:如果想要使用OpenCV进行分类器的生成,可以使用opencv_traincascade.exe命令,并提供指定的参数,例如-data用于指定生成的分类器的保存路径,-vec用于指定正样本描述文件的路径,-bg用于指定负样本文件的路径,以及其他参数如numPos、numNeg、minHitRate等。 关于"opencv hlg"的问题,根据提供的引用内容,我没有找到与"opencv hlg"相关的具体信息。可能需要提供更多背景或上下文信息来解答该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [OpenCvSharp](https://download.csdn.net/download/qq_18865111/86722032)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [python opencv 读取图片 存储图片](https://blog.csdn.net/weixin_41799483/article/details/80829825)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [opencv分类器训练方法](https://blog.csdn.net/weixin_41799483/article/details/80567909)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值