链接:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1625
描述:
ikki 最近对数字颇感兴趣。现在ikki在纸上写了连续的N个数字,每个数字都是[1,N]之间任意的一个数而且不重复,即这串数字
是数字1~N的一个排列,数字的序号从1到N,现在ikki想考你一下:
在这N个数字中能找出多少个3个数的组合满足:num[x]<num[z]<num[y]且x<y<z,其中x,y,z为这三个数字的下标。Input:
多组测试数据,第一行一个整数T表示测试数据的个数。
对于每组数据,第一行输入一个整数N表示数列中数字的个数(1<=N<=5000)
第二行输入N个数字表示一个1~N的排列。
Output:
对于每组数据,输出”Case #k: p” ,k表示第k组样例,p表示满足要求的3个数字的组合数目,每组输出占一行。
由于结果可能比较大,结果需对100000007取模。
Sample Input:2
6
1 3 2 6 5 4
5
3 5 2 4 1
Sample Output:
Case #1: 10
Case #2: 1
这道题显然不能用传统的方法来进行统计,当然,看过树状数组的人应该想得到这道题要用树状数组啦;难度一般,卡时间!
The Code:
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cstdlib> #define RST(N)memset(N, 0, sizeof(N)) #define INF 0x1f1f1f1f #define MAXN 100100 using namespace std; long long cal[MAXN]; int lowbit(int x) { return x & (-x); } long long getsum(int x) { long long s = 0; for(; x>0; x-=lowbit(x)) s += cal[x]; return s; } void update(int x, int value) { for(; x<=MAXN; x+=lowbit(x)) cal[x] += value; } int cas, a, n, cat = 1; int main() { long long res; scanf("%d", &cas); while(cas--) { RST(cal); scanf("%d", &n); res = 0; for(int i=1; i<=n; i++) { scanf("%d", &a); update(a, 1); long long t1 = getsum(a-1); long long t2 = n-a-(i-t1-1); res -= t1*t2; if(t2 >= 2) res += t2*(t2-1)/2; //这里mod会WA } printf("Case #%d: %d\n", cat++, res%100000007); } return 0; }