思路:说实话,这题纠结了我很久,一开始做时全无思路,后来参考了网上大神的代码才发现,这题其实不难~转化一下就能成为树状数组的裸题。就是先模拟一个链表(个人不大会用链表,只会模拟),然后用dfs构造合适的区间,然后就能像普通树状数组一样做了。
AC代码:
import java.util.Arrays;
import java.util.Scanner;
class appleTree {int l,r,next;}
public class Main
{
static int maxn=100001;
static int up[]=new int[maxn];//这是区间的右端点
static int down[]=new int[maxn];//这是区间的左端点
static int head[]=new int[maxn];//这是模拟得指针,初始时全部赋值成-1
static int c[]=new int[maxn];//这个数组便是那个树状数组
static int ifApple[]=new int[maxn];//这个数组的值只有0或1,表示苹果的个数
static int order=1,numedge=0;
static appleTree a[]=new appleTree[maxn<<1];
static Scanner scan=new Scanner(System.in);
private static void addEdge(int u,int v)
{
a[numedge]=new appleTree();//这是链表的节点,包含了一个区间
a[numedge].l=u;//左端点
a[numedge].r=v;//右端点
a[numedge].next=head[u];//下一个节点,若是-1,则代表没有
head[u]=numedge++;
}
private static void dfs(int x)
{
down[x]=order;
for(int i=head[x];i!=-1;i=a[i].next)
dfs(a[i].r);
up[x]=order++;
}
private static int lowbit(int x) {return x&(-x);}
private static void update(int x,int add)
{
for(int i=x;i<maxn;i+=lowbit(i))
c[i]+=add;
}
private static int sum(int x)
{
int sum=0;
for(int i=x;i>0;i-=lowbit(i))
sum+=c[i];
return sum;
}
public static void main(String[] args)
{
int n=scan.nextInt();
Arrays.fill(head,-1);
for(int i=1;i<maxn;i++)
c[i]=i&(-i);//这是记录个数,一开始每个节点都有苹果,c[i]=i&(-i)便是c[i]这个节点包含a的个数,比如c[2]=a[1]+a[2]=2
for(int i=1;i<n;i++)
{
int u=scan.nextInt();
int v=scan.nextInt();
ifApple[u]=ifApple[v]=1;//提到的节点才赋值为1,代表有苹果
addEdge(u,v);//添加这段节点
}
dfs(1);//构造区间开始了,先从第一个节点开始
int m=scan.nextInt();
while(m-->0)
{
String key=scan.next();
int x=scan.nextInt();
if(key.charAt(0)=='C')
{
update(up[x],ifApple[x]!=0?-1:1);//改变苹果的状态
ifApple[x]=1-ifApple[x];
}
if(key.charAt(0)=='Q')
System.out.println(sum(up[x])-sum(down[x]-1));
}
}
}