深度学习
文章平均质量分 84
qq小小布丁
内向
展开
-
docker的一些命令
1、启动一个docker容器# docker run -t -i ubuntu/ruby:v1 /bin/bash2、然后在容器里,安装openssh-server openssh-client# apt-get install openssh-server openssh-client3、完成之后,修改root密码# passwd4原创 2016-11-06 14:50:34 · 326 阅读 · 0 评论 -
faster-rcnn 安装
faster-rcnn提出论文: 《Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》faster-rcnn 的算法详解可看这篇博文(清晰易懂,良心博文!): http://blog.csdn.net/shenxiaolu1984/article/details/51152614转载 2016-12-02 17:06:00 · 11309 阅读 · 4 评论 -
faster rcnn文件夹说明
1、tools文件夹(1)_init_paths.py用来初始化路径的,也就是之后的路径会join(path,*)(2)compress_net.py用来压缩参数的,使用了SVD来进行压缩,这里可以发现,作者对于fc6层和fc7层进行了压缩,也就是两个全连接层。(3)demo.py通常,我们会直接调用这个函数,如果要测试自己的模型和数据,这里需要修改。这里调用了fast_r原创 2017-04-07 15:32:14 · 5270 阅读 · 1 评论 -
ubuntu下运行,配置java环境
其实不需要怎么配置,直接到ubuntu软件中心里面搜jre就行了,安装上。在终端输入:sudo apt-get install openjdk-6-jdk再在ubuntu软件中心里面搜索eclipse下载安装即可。不安装eclipse也行,不过运行什么的都要在终端了。。。。。下面就运行试试:1.直接终端运行:在桌面建立一个文本文档命名为t原创 2016-12-26 20:49:45 · 347 阅读 · 0 评论 -
Caffe安装教程之Ubuntu16.04
要进行深度学习的研究工作,就不得不提到Caffe,一个优秀的深度学习框架。 那我们应该如何安装Caffe呢?其实Caffe的官网上提供了非常好的安装教程,但所对应的Ubuntu版本为14.04,12.04,没有16.04版的安装教程(大哭),本篇博文就是教大家在Ubuntu16.04上安装Caffe的。 那我们要准备什么呢?所需软件:Oracle VM转载 2016-11-26 20:26:11 · 811 阅读 · 0 评论 -
ubuntu16下opencv3.1.0安装
参考文献:(1)http://blog.csdn.NET/daunxx/article/details/50495111(2)http://blog.csdn.Net/surgewong/article/details/39078251安装步骤:(1)下载两个安装包OpenCV-3.1.0.zip(http://opencv.org/do转载 2016-12-07 09:52:07 · 6819 阅读 · 2 评论 -
caffe中Makefile.config配置
转载出处http://blog.csdn.net/jiajunlee## Refer to http://caffe.berkeleyvision.org/installation.html# Contributions simplifying and improving our build system are welcome!# cuDNN acceleration switch转载 2016-12-11 12:14:43 · 6535 阅读 · 0 评论 -
基于深度图像的行人检测、跟踪技术研究_周波_2014
1、应用背景智能交通、机器视觉、智能监控、计算机辅助驾驶等领域2、本文特点1)通过基于距离信息的分割方法确定目标所在的区域(感兴趣区域),可以有效的去除深度图像中的背景信息,这样可以提高算法的检测效率。每幅图检测的时间再15-100ms之间,达到实时性的要求。2)通过先计算深度图像积分图方法,降低HOG计算复杂度,提高算法的时效性。基于深度图像的行人头肩HOG特征方法对行人原创 2016-11-15 11:24:44 · 5489 阅读 · 0 评论 -
基于卷积神经网络的目标检测模型的研究_黄咨_2014_上海交大
一、传统检测模型和卷积神经网络对比传统检测模型:采用人工特征提取方法获取目标的特征描述。然后输入到一个分类器中学习分类规则。人工特征提取方法的缺点:(1)对设计者提出比较高的学术要求,(2)提取方法高度依赖于具体任务,要求设计者有丰富的实验经验,(3)对应用中提出严格的假设前提,如小尺度,小角度的变换等,现实应用中很难得到满足(4)传统检测模型分离了特征提取和分类训原创 2016-11-17 08:40:10 · 4202 阅读 · 0 评论 -
台湾李宏毅教授深度学习--随机梯度下降
1、随机梯度下降2、3、4、局部最优原创 2016-11-13 15:20:07 · 2146 阅读 · 0 评论 -
台湾李宏毅教授深度学习
1、深度学习,是一个矩阵计算过程,输入层,隐含层,输出层2、神经元一层层计算3、链接视频原创 2016-11-13 12:13:54 · 9495 阅读 · 0 评论 -
深度卷积神经网络在目标检测中发展
参考链接:https://zhuanlan.zhihu.com/p/22045213近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高。回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD等越来越快速和准确的目标检原创 2016-11-13 10:31:07 · 14339 阅读 · 0 评论 -
行人检测论文阅读(2)
一、基于深度学习的行人检测-王斌-北京交通大学-2015行人检测的应用背景:视频监控、车辆辅助驾驶、智能机器人等领域。1、论文特点(1)通常深度学习网络的层次较深,需要学习参数非常多,只有在训练样本充足时才能有效地避免网络训练过拟合。对此本文采用基于内容的图像检索方法进行数据扩充,该方法在进行数据库扩充时充分考虑到原数据库的行人分辨率,背景分布等因素,使扩充后的数据库仍然保持INRIA原创 2016-11-12 14:58:25 · 2548 阅读 · 0 评论 -
行人检测论文阅读
一、基于深度卷积神经网络的行人检测_芮挺1、行人检测的概述行人检测作为目标检测的一种。目前行人检测技术主要基于统计分类的方法,将行人检测转化成人与非人的二分类问题,包括特征提取和分类学习两个部分。传统的行人检测需要人工设计复杂的特征提取方法,这些方法再鲁棒性上有一定的局限性。HOG特征是目前公认的最具有泛化能力的特征之一,但是对于复杂背景和遮挡等情况下的行人检测效果较差。将HOG特征和原创 2016-11-11 11:03:13 · 2113 阅读 · 0 评论 -
阅读论文要点
一、视频图像中车型识别系统的研究与实践-杨德升-2014-广西师范大学1、目标检测:预处理、目标提取选用图像平均法来滑动更新背景图像减背景图像法,之后灰度化,采用自适应阈值方法二值化图像,进而采用数字形态的方法对车辆图像的区域里的噪点进行消除等操作,同时采用漫水填充算法去除车体外较大的噪点,用填充法填充车体内部不连通的区域,然后提前轮廓,得到较完整的车型轮廓。 视频图像中预处理及实际原创 2016-11-10 09:07:04 · 372 阅读 · 0 评论 -
faster rcnn 中anchor_target_layer.py
参考链接:http://blog.csdn.net/sunyiyou9/article/details/52264338本文介绍了在solver中出现的用Python定义的layer,顾名思义,该layer主要功能是产生anchor,并对anchor进行评分等操作,详细见代码注释。 class AnchorTargetLayer(caffe.Layer):"""Assign anc转载 2017-04-07 19:36:03 · 2404 阅读 · 0 评论