给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素。
说明:
你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数。
示例 1:
输入: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
输出: 1
示例 2:
输入: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
输出: 3
进阶:
如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k 小的值,你将如何优化 kthSmallest 函数?
解法一:递归
List<Integer> res = new ArrayList<>();
public int kthSmallest(TreeNode root, int k) {
helper(root);
return res.get(k-1);
}
public void helper(TreeNode root){
if(root!=null){
helper(root.left);
res.add(root.val);
helper(root.right); }
}
解法二:迭代
public int kthSmallest(TreeNode root, int k) {
Stack<TreeNode> q = new Stack<>();
int res = -1;
int flag = 0;
while(!q.isEmpty()||root!=null){
while(root!=null){
q.push(root);
root = root.left;
}
flag++;
root = q.pop();
if(flag==k){
res = root.val;
break;
}
root = root.right;
}
return res;
}