hdu 1395 2^x mod n = 1

本文介绍了一个算法问题,即寻找满足2^x模n等于1的最小正整数x的方法。文章通过分析n的不同情况给出了相应的解题思路,并提供了一段C++代码实现,特别指出对于奇数n的情况可通过不断取模来减少运算量。

转载请注明出处:http://blog.csdn.net/u012860063

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1395

Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.

Input
One positive integer on each line, the value of n.

Output
If the minimum x exists, print a line with 2^x mod n = 1.
Print 2^? mod n = 1 otherwise.
You should replace x and n with specific numbers.

Sample Input
  
2 5
Sample Output
  
2^? mod 2 = 1 2^4 mod 5 = 1

1)当n为1,无解。
2)n为偶数2^x显然为偶数,而1为奇数,2^n和1不可能关于n同余,x无解。
3)n为奇数时(此时暴力即可)
值得注意的是,暴力时为了减小运算量,可以先取摸,再乘2,即代码中的i=(i%n)*2。否则会TLE。

代码如下:

#include <cstdio>
int main()
{
	int n,i;
	while(~scanf("%d",&n))
	{
		if(n == 1 || n%2 == 0)
		{
			printf("2^? mod %d = 1\n",n);
			continue;
		}
		int sum = 2;
		for(i = 2 ; ; i++)
		{
			sum=(sum%n) * 2;
			if(sum%n == 1)
			break;
		}
		printf("2^%d mod %d = 1\n",i,n);
	}
	return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值