题意:经典Nim游戏博弈,给你n堆牌,每堆a[i]张,每次能从一堆中取出任一张(不能为0),最后不能取者为输
问先手有几种取法保证他最后能获胜。
思路:让Nim_sum=0(a[1]^a[2]…………^a[n]=0)时则输,利用这个定理,对于第i堆a[i],除了第i堆,其它的
Nim_sum=k,如果a[i]>k,则先手从第i堆可以取a[i]-k张牌,让a[i]=k,最后a[i]^k==0。
#include<cstdio>
#include<stdlib.h>
#include<string.h>
#include<string>
#include<map>
#include<cmath>
#include<iostream>
#include <queue>
#include <stack>
#include<algorithm>
#include<set>
using namespace std;
#define INF 1e8
#define eps 1e-8
#define LL long long
int main()
{
int n;
int a[110];
while(scanf("%d",&n)&&n)
{
int st=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
st^=a[i];
}
int ans=0;
if(st==0)
{
printf("0\n");
}
else
{
for(int i=0;i<n;i++)
{
if((st^a[i])<=a[i])//xor可以互逆
ans++;
}
printf("%d\n",ans);
}
}
return 0;
}