题意:给你N*N的网格,‘.’表示可以走,‘#’表示不能走,m条管道,每条管道有起点和终点坐标,
Bob每次可以走到相邻的网格花费1s,问Bob走完m条管道要花多少时间;Bob在管道内不计算时间
即计算Bob从管道 i 的出口走到管道 j 的入口的时间Dis(e[i],s[j])的最小和,起点可以任意;
思路:看了题解说是状态压缩DP然后深入理解了下。
首先算出d[e[i]][s[j]]的最短距离,不能到达为-1;
dp[i][j] : 表示以 j 为起点状态为 i 的最小值。其中 i 是用十进制表示的二进制,
eg:
dp[5][2]:5的二进制位101,表示以编号2管道为起点(0~m-1),走了0,2号管道的最小值。
#include<stdio.h>
#include<string.h>
#include<string>
#include<map>
#include<stack>
#include<math.h>
#include<queue>
#include<vector>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 20
struct Point
{
int x,y;
int sum;
};
int n,m,g[maxn][maxn],ans,vis[maxn];
int ma[maxn][maxn];
char str[maxn][maxn];
Point s[maxn],e[maxn];
int dir[4][2]={{-1,0},{0,1},{0,-1},{1,0}};
int d[maxn][maxn];
int OK(int a,int b)
{
if(a<1||a>n||b<1||b>n||g[a][b]==-1) return 0;
return 1;
}
int dis(Point s,Point e)
{
queue<Point>q;
Point u,v;
s.sum=0;
q.push(s);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=ma[i][j];
g[s.x][s.y]=-1;
while(!q.empty())
{
u=q.front();
q.pop();
if(u.x==e.x&&u.y==e.y)
{
return u.sum;
}
for(int i=0;i<4;i++)
{
v.x=u.x+dir[i][0];
v.y=u.y+dir[i][1];
if(OK(v.x,v.y))
{
g[v.x][v.y]=-1;
v.sum=u.sum+1;
q.push(v);
}
}
}
return -1;
}
int dp[1<<15][maxn];
int main()
{
while(~scanf("%d%d",&n,&m))
{
int i,j,k;
for(i=1;i<=n;i++)
{
scanf("%s",str[i]+1);
for(j=1;j<=n;j++)
{
if(str[i][j]=='.') ma[i][j]=1;
else ma[i][j]=-1;
}
}
for(i=0;i<m;i++)
scanf("%d%d%d%d",&s[i].x,&s[i].y,&e[i].x,&e[i].y);
for(i=0;i<m;i++)
{
for(j=0;j<m;j++)
{
if(i==j) d[i][j]=0;
else d[i][j]=dis(e[i],s[j]);
}
}
memset(dp,-1,sizeof(dp));
for(i=0;i<m;i++)
dp[1<<i][i]=0;
int M=1<<m;
for(i=0;i<M;i++)
{
for(j=0;j<m;j++)
{
if(i&(1<<j)&&dp[i][j]!=-1)
{
for(k=0;k<m;k++)
{
if(!(i&(1<<k))&&d[k][j]!=-1)//k点没有走过且k点可以到达j点
{
int tmp=i|(1<<k);//加上k点的二进制
int cnt=dp[i][j]+d[k][j];
if(dp[tmp][k]==-1||cnt<dp[tmp][k])
dp[tmp][k]=cnt;
}
}
}
}
}
ans=-1;
for(i=0;i<m;i++)
{
if(dp[M-1][i]==-1)
continue;
if(ans==-1||ans>dp[M-1][i])
ans=dp[M-1][i];
}
printf("%d\n",ans);
}
return 0;
}
/*
5 4
....#
...#.
.....
.....
.....
2 3 1 4
1 2 3 5
2 3 3 1
5 4 2 1
*/