HDU 4856 Tunnels (最短路+状压DP)

本文介绍了一种使用状态压缩动态规划解决特定路径寻找问题的方法。问题设定在一个N*N的网格中,需要计算Bob通过特定管道时,在不同管道间移动所需的最短时间总和。文章详细解释了如何构建状态表示以及进行状态转移的过程。
摘要由CSDN通过智能技术生成



题意:给你N*N的网格,‘.’表示可以走,‘#’表示不能走,m条管道,每条管道有起点和终点坐标,


Bob每次可以走到相邻的网格花费1s,问Bob走完m条管道要花多少时间;Bob在管道内不计算时间


即计算Bob从管道 i 的出口走到管道 j 的入口的时间Dis(e[i],s[j])的最小和,起点可以任意;


思路:看了题解说是状态压缩DP然后深入理解了下。


首先算出d[e[i]][s[j]]的最短距离,不能到达为-1;


dp[i][j] : 表示以 j 为起点状态为 i 的最小值。其中 i 是用十进制表示的二进制,


eg:

dp[5][2]:5的二进制位101,表示以编号2管道为起点(0~m-1),走了0,2号管道的最小值。


#include<stdio.h>
#include<string.h>
#include<string>
#include<map>
#include<stack>
#include<math.h>
#include<queue>
#include<vector>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 20

struct Point 
{
	int x,y;
	int sum;
};
int n,m,g[maxn][maxn],ans,vis[maxn];
int ma[maxn][maxn];
char str[maxn][maxn];
Point s[maxn],e[maxn];
int dir[4][2]={{-1,0},{0,1},{0,-1},{1,0}};  
int d[maxn][maxn];
int OK(int a,int b)
{
	if(a<1||a>n||b<1||b>n||g[a][b]==-1) return 0;
	return 1;
}
int dis(Point s,Point e)
{
	queue<Point>q;
	Point u,v;
	s.sum=0;
	q.push(s);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		   g[i][j]=ma[i][j];
	g[s.x][s.y]=-1;
	while(!q.empty())
	{
		u=q.front();
		q.pop();
		if(u.x==e.x&&u.y==e.y)
		{
			return u.sum;
		}
		for(int i=0;i<4;i++)
		{
			v.x=u.x+dir[i][0];
			v.y=u.y+dir[i][1];
			if(OK(v.x,v.y))
			{
				g[v.x][v.y]=-1;
				v.sum=u.sum+1;
				q.push(v);
			}
		}
	}
	return -1;
}
int dp[1<<15][maxn];
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		int i,j,k;
		for(i=1;i<=n;i++)
		{
			scanf("%s",str[i]+1);
			for(j=1;j<=n;j++)
			{
				if(str[i][j]=='.') ma[i][j]=1;
				else ma[i][j]=-1;
			}
		}
		for(i=0;i<m;i++)
			scanf("%d%d%d%d",&s[i].x,&s[i].y,&e[i].x,&e[i].y);
		for(i=0;i<m;i++)
		{
			for(j=0;j<m;j++)
			{
				if(i==j) d[i][j]=0;
				else  d[i][j]=dis(e[i],s[j]);
			}
		}
		memset(dp,-1,sizeof(dp));
		for(i=0;i<m;i++)
			dp[1<<i][i]=0;
		int M=1<<m;
		for(i=0;i<M;i++)
		{
			for(j=0;j<m;j++)
			{
				if(i&(1<<j)&&dp[i][j]!=-1)
				{
					for(k=0;k<m;k++)
					{
						if(!(i&(1<<k))&&d[k][j]!=-1)//k点没有走过且k点可以到达j点
						{
							int tmp=i|(1<<k);//加上k点的二进制
							int cnt=dp[i][j]+d[k][j];
							if(dp[tmp][k]==-1||cnt<dp[tmp][k])
								dp[tmp][k]=cnt;
						}
					}
				}
			}
		}
		ans=-1;
		for(i=0;i<m;i++)
		{
			if(dp[M-1][i]==-1)
				continue;
			if(ans==-1||ans>dp[M-1][i])
				ans=dp[M-1][i];
		}
		printf("%d\n",ans);
	}
	return 0;
}
/*
5 4
....#
...#.
.....
.....
.....
2 3 1 4
1 2 3 5
2 3 3 1
5 4 2 1
*/


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值