uva 662 - Fast Food

Fast Food 

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurent and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.


To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers $d_1 < d_2 < \dots < d_n$ (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number $k (k \leŸ n)$ will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as


\begin{displaymath}\sum_{i=1}^n \mid d_i - (\mbox{position of depot serving restaurant }i) \mid\end{displaymath}

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input 

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers  n  and  k n  and  k  will satisfy  $1 \leŸ n\leŸ 200$ $1 \leŸ k Ÿ\le 30$ $k \le n$ . Following this will  n  lines containing one integer each, giving the positions  d i  of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output 

For each chain, first output the number of the chain. Then output an optimal placement of the depots as follows: for each depot output a line containing its position and the range of restaurants it serves. If there is more than one optimal solution, output any of them. After the depot descriptions output a line containing the total distance sum, as defined in the problem text.


Output a blank line after each test case.

Sample Input 

6 3
5
6
12
19
20
27
0 0

Sample Output 

Chain 1
Depot 1 at restaurant 2 serves restaurants 1 to 3
Depot 2 at restaurant 4 serves restaurants 4 to 5
Depot 3 at restaurant 6 serves restaurant 6
Total distance sum = 8

这道题难度其实不大,仔细分析就能想到dp[i][j]表示前i个餐厅设置j个仓库最小代价。

假设第j个仓库管辖范围[k,i],这里说明一点,每个仓库的管辖范围肯定是一段连续餐厅区间,否则不可能最优,这个留个你们去证明。

那么dp[i][j]=max{dp[k-1][j-1]+dis[k][i]},j<=k<=i,这里枚举i,j,k是必须的,复杂度已达O(kn^2),因此dis数组必须在O(1)的时间内得到。

dis[i][j]说白了是在第i个餐馆到第j个餐馆之间选个位置建个仓库使代价最小,这个显然是中位数。不明白的可以去翻翻中位数的性质:到其他数的距离之和最小。

求dis[i][j],枚举i,j复杂度已达O(n^2),因此每个dis[i][j]都必须在O(1)时间里得到,可以再来次dp,dis[i][j]=dis[i][j-1]+a[j]-a[i+j>>1];

或者可以观察一下规律:把所有距离和累加,会发现其实是若干个a[i+j>>1]和两端段区间和相加减。两种方法都可以。这里用第一种了!

代码:

#include<cstdio>
#include<iostream>
#define Maxn 210
using namespace std;

int a[Maxn],dis[Maxn][Maxn],dp[Maxn][40],path[Maxn][40];
const int inf=1<<30;
void print(int n,int m){
    if(m==0) return;
    int s=path[n][m]/201,e=path[n][m]%201;
    print(s-1,m-1);
    printf("Depot %d at restaurant %d serves restaurant",m,s+e>>1);
    if(s==e) printf(" %d\n",s);
    else printf("s %d to %d\n",s,e);
}
int main()
{
    int n,m,cas=1;
    while(~scanf("%d%d",&n,&m),n){
        for(int i=1;i<=n;i++){
            scanf("%d",a+i);
            dis[i][i]=0;
        }
        for(int l=1;l<n;l++)
            for(int i=1,j=1+l;j<=n;i++,j++)
                dis[i][j]=dis[i][j-1]+a[j]-a[i+j>>1];
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                dp[i][j]=inf;
        for(int i=1;i<=n;i++){
            dp[i][1]=dis[1][i];
            path[i][1]=201+i;
        }
        for(int i=2;i<=n;i++)
            for(int j=2;j<=min(i,m);j++)
                for(int k=j;k<=i;k++){
                    if(dp[k-1][j-1]+dis[k][i]<dp[i][j]){
                        dp[i][j]=dp[k-1][j-1]+dis[k][i];
                        path[i][j]=k*201+i;
                    }
                }
        printf("Chain %d\n",cas++);
        print(n,m);
        printf("Total distance sum = %d\n\n",dp[n][m]);
    }
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值