S4VM解析

S4VM是半监督支持向量机的一种拓展,与S3VM不同,它通过考虑多个可能的低密度超平面来避免局部最优。S4VM的目标函数确保了超平面之间的差异性,采用全局模拟退火算法和采样策略来寻找全局最优解。模拟退火算法通过控制温度参数逐步逼近全局最小值,而采样方式则通过聚类和S3VM求解选出最优超平面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、S3VM

传统半监督支持向量机通过探索未标记数据来规范。调整决策边界,寻找最有的大间隔、低密度的超平面,比如S3VMs、TSVM等半监督SVM算法,如图所示,S3VM试图找到一个超平面,将有标记样本能够正确划分,且穿过特征空间中密度最低的区域;右图即是S3VM寻找的理想超平面。

           

S3VM的目标函数如下, 其中损失函数是hinge loss,限制条件是保证未标注样本的分布于标注样本分布一致。

  

因为给定少量的有标注点和大量无标注的点,可能存在不止一个间隔较大的低密度分界线,如果只考虑一个,可能会造成较大的损失。

              

2、S4VM:

不同于S3VM&#

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值