最近看到一些关于分类器模型评价的指标的文章和资料,还是挺收益的。
下面贴出参考文献的地址:
http://blog.csdn.net/pipisorry/article/details/51788927?locationNum=3&fps=1
http://blog.csdn.net/ice110956/article/details/20288239?utm_source=tuicool&utm_medium=referral
http://www.tuicool.com/articles/qYNNF3
https://www.zhihu.com/question/30643044
https://www.kaggle.com/general/7517
结论:ROC/AUC不受阈值选取的影响,在正负样本数据集平衡的情况下,可作为较优的二分类器模型的评价指标;PRC与F1阈值选择相关,一般不作为评价指标;
在训练集中负样本数远大于正样本数或不关注负样本的分类时时,PRC是一个不错的选择。选用precision与recall与具体场景有关。