关于ROC/AUC/PRC/F1/PRECISION/RECALL(对相关文献的整理,方便以后查看)

最近看到一些关于分类器模型评价的指标的文章和资料,还是挺收益的。

下面贴出参考文献的地址:

http://blog.csdn.net/pipisorry/article/details/51788927?locationNum=3&fps=1

http://blog.csdn.net/ice110956/article/details/20288239?utm_source=tuicool&utm_medium=referral

http://www.tuicool.com/articles/qYNNF3

https://www.zhihu.com/question/30643044

https://www.kaggle.com/general/7517

结论:ROC/AUC不受阈值选取的影响,在正负样本数据集平衡的情况下,可作为较优的二分类器模型的评价指标;PRC与F1阈值选择相关,一般不作为评价指标;

在训练集中负样本数远大于正样本数或不关注负样本的分类时时,PRC是一个不错的选择。选用precision与recall与具体场景有关。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值