评价指标MSE和AUC的参考文献

 

 

### MSE MAE 的定义 #### 均方误差 (MSE) 均方误差(Mean Squared Error, MSE)衡量的是预测值与真实值之间差异的平方的平均值。具体来说,MSE 对于每一个样本计算其预测值实际值之间的差值,然后取这些差值的平方再求平均。 \[ \text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(y_i-\hat y_i)^2 \] 其中 \( n \) 是样本数量,\( y_i \) 表示第 i 个样本的真实标签,\(\hat y_i\) 则代表对应的预测结果[^1]。 由于采用了平方操作,较大的错误会被显著放大,这使得 MSE 更加敏感于异常点的影响,在存在较大偏差的情况下会给出更高的惩罚分数[^4]。 #### 平均绝对误差 (MAE) 平均绝对误差(Mean Absolute Error, MAE)则是指所有单个观测值与其相应估计值间绝对差距的算术平均数: \[ \text{MAE}=\frac{\sum|Y_i-X_i|}{N} \] 这里 N 表示总的观察次数;X_i,Y_i 分别对应着每次测量中的理论真值以及实验测得的数据[^2]。 相比于 MSE,MAE 不会对较大的残差施加过多权重,因此更能体现整体上的偏离情况而不受极端值影响太大。 ### 应用场景对比 当面对不同类型的回归问题时,选择合适的损失函数至关重要。如果希望模型能够更严格地对待那些远离目标值的大规模误判,则应该优先考虑使用 MSE 来训练模型并评估性能。然而,若担心某些特殊情况下可能出现的巨大波动可能会扭曲整个系统的评判标准,那么采用更加稳健的 MAE 可能更为合适一些[^3]。 另外值得注意的一点是在金融领域或者其他不允许负收益发生的场合下,人们往往倾向于选用 MAE 而不是 MSE ,因为后者可能夸大了负面事件所带来的后果严重性。 ```python import numpy as np def mse(y_true, y_pred): return ((y_true - y_pred)**2).mean() def mae(y_true, y_pred): return abs(y_true-y_pred).mean() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值