欧几里德算法求解最大公约数

本文介绍了欧几里德算法(辗转相除法),阐述了其计算最大公约数的原理,并证明了gcd(a, b) = gcd(b, a mod b)的定理。此外,还探讨了欧几里德算法在处理大素数时的局限性,引出了Stein算法。Stein算法避免了除法和取模操作,只涉及整数移位和加减法,适合处理大整数。并提供了Stein算法的Python实现。" 126699470,7976600,MySQL数据库优化技巧:避免全表扫描,"['数据库', 'MySQL', '查询优化']
摘要由CSDN通过智能技术生成

1、欧几里德算法(辗转相除法)

最大公约数
greatest common divisor,简写为gcd;或highestcommon factor,简写为hcf
最小公倍数
最小公倍数(Least Common Multiple,缩写L.C.M.)

最小公倍数=两数的乘积/最大公约数

欧几里德算法(辗转相除法)
1. 欧几里德算法和扩展欧几里德算法
1). 欧几里德算法
欧几里德算法又称辗转相除法, 用于计算两个整数a, b的最大公约数。其计算原理依赖于下面的定理:

定理: gcd(a, b) = gcd(b, a mod b)

证明:
a可以表示成a = kb + r, 则r = a mod b
假设d是a, b的一个公约数, 则有 d|a, d|b, 而r = a - kb, 因此d|r。
因此,d是(b, a mod b)的公约数。
加上d是(b,a mod b)的公约数,则d|b, d|r, 但是a = kb + r,因此d也是(a, b)的公约数。
因此,(a, b) 和(a, a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值