https://leetcode.com/discuss/46668/recursive-iterative-manipulation-solutions-explanations
Given a set of distinct integers, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
方法一:回溯法
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs;
vector<int> sub;
genSubsets(nums, 0, sub, subs);
return subs;
}
void genSubsets(vector<int>& nums, int start, vector<int>& sub, vector<vector<int>>& subs) {
subs.push_back(sub);
for (int i = start; i < nums.size(); i++) {
sub.push_back(nums[i]);
genSubsets(nums, i + 1, sub, subs);
sub.pop_back();
}
}
};
方法二:迭代法
This problem can also be solved iteratively. Take [1, 2, 3] in the problem statement as an example. The process of generating all the subsets is like:
Initially: [[]]
Adding the first number to all the existed subsets: [[], [1]];
Adding the second number to all the existed subsets: [[], [1], [2], [1, 2]];
Adding the third number to all the existed subsets: [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]].
Have you got the idea :-)
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs(1, vector<int>());
for (int i = 0; i < nums.size(); i++) {
int n = subs.size();
for (int j = 0; j < n; j++) {
subs.push_back(subs[j]);
subs.back().push_back(nums[i]);
}
}
return subs;
}
};
方法三:bit位操作
奇技淫巧
https://leetcode.com/discuss/9213/my-solution-using-bit-manipulation
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort (S.begin(), S.end());
int elem_num = S.size();
int subset_num = pow (2, elem_num);
vector<vector<int> > subset_set (subset_num, vector<int>());
for (int i = 0; i < elem_num; i++)
for (int j = 0; j < subset_num; j++)
if ((j >> i) & 1)
subset_set[j].push_back (S[i]);
return subset_set;
}
};
解释:
Number of subsets for {1 , 2 , 3 } = 2^3 .
why ?
case possible outcomes for the set of subsets
1 -> Take or dont take = 2
2 -> Take or dont take = 2
3 -> Take or dont take = 2
therefore , total = 2*2*2 = 2^3 = { { } , {1} , {2} , {3} , {1,2} , {1,3} , {2,3} , {1,2,3} }
Lets assign bits to each outcome -> First bit to 1 , Second bit to 2 and third bit to 3
Take = 1
Dont take = 0
0) 0 0 0 -> Dont take 3 , Dont take 2 , Dont take 1 = { }
1) 0 0 1 -> Dont take 3 , Dont take 2 , take 1 = {1 }
2) 0 1 0 -> Dont take 3 , take 2 , Dont take 1 = { 2 }
3) 0 1 1 -> Dont take 3 , take 2 , take 1 = { 1 , 2 }
4) 1 0 0 -> take 3 , Dont take 2 , Dont take 1 = { 3 }
5) 1 0 1 -> take 3 , Dont take 2 , take 1 = { 1 , 3 }
6) 1 1 0 -> take 3 , take 2 , Dont take 1 = { 2 , 3 }
7) 1 1 1 -> take 3 , take 2 , take 1 = { 1 , 2 , 3 }
In the above logic ,Insert S[i] only if (j>>i)&1 ==true { j E { 0,1,2,3,4,5,6,7 } i = ith element in the input array }
element 1 is inserted only into those places where 1st bit of j is 1
if( j >> 0 &1 ) ==> for above above eg. this is true for sl.no.( j )= 1 , 3 , 5 , 7
element 2 is inserted only into those places where 2nd bit of j is 1
if( j >> 1 &1 ) == for above above eg. this is true for sl.no.( j ) = 2 , 3 , 6 , 7
element 3 is inserted only into those places where 3rd bit of j is 1
if( j >> 2 & 1 ) == for above above eg. this is true for sl.no.( j ) = 4 , 5 , 6 , 7
Time complexity : O(n*2^n) , for every input element loop traverses the whole solution set length i.e. 2^n