一、sparksql读写mysql数据
1.读取
val url = "jdbc:mysql://主机名:端口号"
val tableName = "db_name"
val properties = new java.util.Properties()
properties.put("user", "username")
properties.put("password", "password")
val tbDeptDF = sqlContext.
read. // 获取数据读取对象
jdbc(url, tableName, properties)
2.写入
val url = "jdbc:mysql://主机名:端口号"
val tableName = "db_name"
val properties = new java.util.Properties()
properties.put("user", "username")
properties.put("password", "password")
df.write.jdbc(url, tableName, properties)
// df.write.mode("append").jdbc(url, tableName, properties)//追加写入
//df.write.mode("overwrite").jdbc(url, tableName, properties)//重新写入
// df.write.mode("ignore").jdbc(url, tableName, properties)//忽略写入
二、sparksql读写parquet格式的数据
1.读取
val df1 = sqlContext.
read. // 获取数据读取对象
format("parquet"). // 指定格式
load("/存储路径")
val df1 = sqlContext.
read. // 获取数据读取对象
format("parquet"). // 指定格式
load("/存储路径")//可以是文件夹,也可以是指定文件
2.写入
df. write. // DF数据写出对象
format("parquet"). // 指定文件格式
mode("overwrite"). // 给定模式是覆盖
save("/路径") // 给定保存路径,存在在hdfs
df.repartition(3). // 重置分区数量为3个
write. // DF数据写出对象
format("parquet"). // 指定文件格式
mode("overwrite"). // 给定模式是覆盖
save("/路径") // 给定保存路径,存在在hdfs