机器学习数据预处理详解:标准化、填充缺失值及编码离散特征


在机器学习建模过程中,数据预处理是至关重要的一步。本文将通过具体示例,详细解释数据预处理的关键步骤,包括标准化数值特征、填充缺失值以及编码离散特征。我们将使用一个简单的训练和测试数据集来说明这些步骤。

示例数据集

训练数据 (train_data)
Id Feature1 Feature2 Feature3 Label
1 10 5.0 A 100
2 20 6.5 B 200
3 30 NaN A 300
测试数据 (test_data)
Id Feature1 Feature2 Feature3
4 25 5.5 B
5 35 7.0 NaN

步骤解析

1. 合并所有特征以进行预处理

首先,将训练和测试数据集的特征(不包括标签列Label)合并,以便对所有特征进行统一的预处理。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值