文章目录
在机器学习建模过程中,数据预处理是至关重要的一步。本文将通过具体示例,详细解释数据预处理的关键步骤,包括标准化数值特征、填充缺失值以及编码离散特征。我们将使用一个简单的训练和测试数据集来说明这些步骤。
示例数据集
训练数据 (train_data
)
Id | Feature1 | Feature2 | Feature3 | Label |
---|---|---|---|---|
1 | 10 | 5.0 | A | 100 |
2 | 20 | 6.5 | B | 200 |
3 | 30 | NaN | A | 300 |
测试数据 (test_data
)
Id | Feature1 | Feature2 | Feature3 |
---|---|---|---|
4 | 25 | 5.5 | B |
5 | 35 | 7.0 | NaN |
步骤解析
1. 合并所有特征以进行预处理
首先,将训练和测试数据集的特征(不包括标签列Label
)合并,以便对所有特征进行统一的预处理。
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data