embed,encode,attend,predict

本文概述了2016年左右的自然语言处理(NLP)主流技术,包括表示、编码、注意力机制及预测方法。文章强调了表示技术如何将ID转化为向量,编码技术如双向RNN/LSTM/GRU如何处理one-hot向量,注意力机制如何改进信息提取,以及预测技术在自然语言推断和文本分类任务中的应用。
摘要由CSDN通过智能技术生成

本文介绍了2016年左右的主流nlp处理方案:表示、编码、注意力机制、预测,并给出自然语言推断和文本分类两个问题上的SOTA的演进过程。

具体来讲:

  • 表示 使得id转化为向量,便于程序进行处理;
  • 编码 双向rnn/lstm/gru将稀疏的one-hot向量转化成稠密短向量;
  • 注意力机制 代替pool/sum操作,将矩阵转化为一维向量,并保存了上下文信息;
  • 预测 结合具体问题可以为0/1、一维向量。

作者同时提到cv里流行的res-block和batch-normlization等方法在nlp里暂时不是必须的。

 

原文地址:https://explosion.ai/blog/deep-learning-formula-nlp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值