本文介绍了2016年左右的主流nlp处理方案:表示、编码、注意力机制、预测,并给出自然语言推断和文本分类两个问题上的SOTA的演进过程。
具体来讲:
- 表示 使得id转化为向量,便于程序进行处理;
- 编码 双向rnn/lstm/gru将稀疏的one-hot向量转化成稠密短向量;
- 注意力机制 代替pool/sum操作,将矩阵转化为一维向量,并保存了上下文信息;
- 预测 结合具体问题可以为0/1、一维向量。
作者同时提到cv里流行的res-block和batch-normlization等方法在nlp里暂时不是必须的。