- 博客(5)
- 收藏
- 关注
原创 Verilog搭建神经网络学习记录,Day5:单层卷积操作实现
该模块的作用是,根据输入的column与row的值,返回14个感受野。具体来说,55的卷积核以步长为1的形式在3232的图片上滑动一次,会产生28个感受野,而我们一次性只取其中的一半。若column=0,则取前一半;若column=1,则取后一半。row的作用是指出行数。
2023-07-23 21:11:11 473 2
原创 Verilog搭建神经网络学习记录,Day4:单次卷积操作实现
单次卷积操作,就是简单地把图片与卷积核的对应位置的元素相乘,然后再求和。如下图所示。
2023-07-23 11:06:29 608
原创 Verilog搭建神经网络学习记录,Day2:16位浮点加法
首先将两数的指数变一样,然后再来计算尾数。若符号相同,直接将两数的 1.尾数 相加,如果计算结果没有产生进位,保留该结果;若符号不同,用正数的1.尾数-负数的1.尾数,若够减,保留该结果;最后再根据结果中第一个‘1’出现的位置来调整结果左移的位数。首先将两数的指数变一样,这里采用的方式是取大的。接下来再根据两数尾数位的计算有无进位,以及结果第一个‘1’出现的位置来调整指数位的大小。若相加的两数符号不同:先把两数的指数变一样后,再来比较尾数的大小,若正数的尾数大,符号为正;若负数的尾数大,符号为负。
2023-07-22 22:37:19 356
原创 Verilog搭建神经网络学习记录,Day1:16位浮点乘法
x±1.a×2b其中,符号位用来表示数字的正负,1表示负数,0表示正数指数位是上述公式中的b加上偏置值,一般为2k−1−1,其中k表示指数位的位数尾数位是上述公式中的a。
2023-07-22 16:38:02 842
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人