Sicily 1696/1929. Flows in Grid

1696. Flows in Grid

Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

Description

The maximum flow problem in general graph is so hard that bob doesn’t know how to solve it. So bob want to try an easy one, the maximum flow in grid. But this easier one is still too hard for bob. Now here is his problem, please help him: 

Given you a N*M grid as followed, edges of the grid represent pipes which the water can run through; the number of the edge is the capacity of the pipe. For example the capacity of the edge between (0,0) and (1,0) is 6, it means that at most 6 units of water can run through this edge(pipe). 

So what is the maximum flow from S to T in the grid? In other words, at most how many units of water can run through from S to T at a time?

Input

The first line of the input is a positive integer T. T is the number of the test cases followed. 

The first line of each test case is two positive integers N(1<N<100) and M(1<M<100). And then two integer matrices H( N*(M-1) ) and V ( (N-1)*M )follow. H[i][j] is the capacity of the edge between (i, j) and (i, j+1). V[i][j] is the capacity of the edge between (i, j) and (i+1, j). All integers in H and V are non-negative and smaller than 10^10. 

Output

The output of each test case is an integer in one line, the maximum flow of the grid between S(0,0) and T(N-1,M-1). No redundant spaces are needed.

Sample Input

13 30 12 34 56 7 89 10 11

Sample Output

6

Hint

Here is one of the maximum flows of the example grid above:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值