LeetCode OJ Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

用Max[i]和Min[i]分别表示以A[i]结尾的连续最大积子序列和连续最小积子序列,那么有以下递推式:
Max[i] = max(A[i], Max[i - 1] * A[i], Min[i - 1] * A[i]),注意当A[i]是负数的时候,越小的值与其相乘能得到尽量大的值,在某些情况下,单独的子序列A[i]是最大的,类似的有:

Min[i] = min(A[i], Max[i - 1] * A[i], Min[i - 1] * A[i]),最后在Max[]中找到最大值即可。

class Solution {
public:
    int maxProduct(int A[], int n) {
        vector<int> Max(n), Min(n);
        int ans = A[0];
        Max[0] = Min[0] = A[0];
        for (int i = 1; i < n; i++) {
            Max[i] = max(A[i], max(Max[i - 1] * A[i], Min[i - 1] * A[i]));
            Min[i] = min(A[i], min(Max[i - 1] * A[i], Min[i - 1] * A[i]));
            if (Max[i] > ans) ans = Max[i];
        }
        return ans;
    }
};

后来看到了一种省空间的方法,其实原理是一样的:
class Solution {
public:
    int maxProduct(int A[], int n) {
        if (n == 1) return A[0];
        int pMax = 0, nMax = 0, m = 0;
        for (int i = 0; i < n; i++) {
            if (A[i] < 0) swap(pMax, nMax);
            pMax = max(pMax * A[i], A[i]);
            nMax = min(nMax * A[i], A[i]);
            m = max(m, pMax);
        }
        return m;
    }
};
在这里,pMax表示以A[i]结尾的连续最大绝对值正数积子序列的值,nMax表示A[i]结尾的连续最大绝对值负数积子序列的值,当遇到A[i]是负数的时候将pMax和nMax交换确保得到的新pMax和nMax是符合原意的。
另外要注意A[] = {-2}的情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值