Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
用Max[i]和Min[i]分别表示以A[i]结尾的连续最大积子序列和连续最小积子序列,那么有以下递推式:
Max[i] = max(A[i], Max[i - 1] * A[i], Min[i - 1] * A[i]),注意当A[i]是负数的时候,越小的值与其相乘能得到尽量大的值,在某些情况下,单独的子序列A[i]是最大的,类似的有:
Min[i] = min(A[i], Max[i - 1] * A[i], Min[i - 1] * A[i]),最后在Max[]中找到最大值即可。
class Solution {
public:
int maxProduct(int A[], int n) {
vector<int> Max(n), Min(n);
int ans = A[0];
Max[0] = Min[0] = A[0];
for (int i = 1; i < n; i++) {
Max[i] = max(A[i], max(Max[i - 1] * A[i], Min[i - 1] * A[i]));
Min[i] = min(A[i], min(Max[i - 1] * A[i], Min[i - 1] * A[i]));
if (Max[i] > ans) ans = Max[i];
}
return ans;
}
};
后来看到了一种省空间的方法,其实原理是一样的:
class Solution {
public:
int maxProduct(int A[], int n) {
if (n == 1) return A[0];
int pMax = 0, nMax = 0, m = 0;
for (int i = 0; i < n; i++) {
if (A[i] < 0) swap(pMax, nMax);
pMax = max(pMax * A[i], A[i]);
nMax = min(nMax * A[i], A[i]);
m = max(m, pMax);
}
return m;
}
};
在这里,pMax表示以A[i]结尾的连续最大绝对值正数积子序列的值,nMax表示A[i]结尾的连续最大绝对值负数积子序列的值,当遇到A[i]是负数的时候将pMax和nMax交换确保得到的新pMax和nMax是符合原意的。
另外要注意A[] = {-2}的情况。