POJ 1789 最小生成树(裸..当模板用把)

6 篇文章 0 订阅
3 篇文章 0 订阅

基本就是裸的算法

当模板用把。。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define MAX 2014
#define P pair<int,int>
#define fst first
#define sec second
#define MS(x) memset(x,0,sizeof(x))
char car[MAX][20];
int d[MAX][MAX];
int minCost[MAX];
int used[MAX];
int diff(char s1[],char s2[])
{
	int di=0;
	for(int i=0;i<7;i++)
		if(s1[i]!=s2[i])
			di++;
	return di;
}

priority_queue<P,vector<P>,greater<P> > q;
int main()
{
	int n;
	while(scanf("%d",&n)&&n!=0)
	{
		MS(d);
		MS(used);
		while(!q.empty())
			q.pop();
		for(int i=0;i<MAX;i++)
			minCost[i]=0x3f3f3f3f;
		for(int i=0;i<MAX;i++)
			for(int j=0;j<MAX;j++)
				d[i][j]=0x3f3f3f3f;
		for(int i=0;i<n;i++)
			scanf("%s",car[i]);
		for(int i=0;i<n;i++)
			for(int j=0;j<i;j++)
			{
				int t=diff(car[i],car[j]);
				d[i][j]=d[j][i]=t;
			}
		q.push(P(0,0));	
		int ans=0;
		for(int i=0;i<n;i++)// 这里一定要是 n 次因为第一次不算加边
		{
			while(used[q.top().sec])
				q.pop();

			P tp=q.top();
			q.pop();
			ans+=tp.fst;
			int v=tp.sec;
			used[v]=1;
			for(int j=0;j<MAX;j++)
			{
				if(!used[j]&&d[v][j]<minCost[j])
				{
					q.push(P(d[v][j],j));
					minCost[j]=d[v][j];
				}	
			}
		}
		printf("The highest possible quality is 1/%d.\n",ans);	
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
POJ1753题目为"Flip Game",题目给出了一个4x4的棋盘,每个格子有黑色或白色,每次翻转一个格子会同时翻转它上下左右四个格子的颜色,目标是把整个棋盘都变为同一种颜色,求把棋盘变成同种颜色的最小步数。 解题思路: 一般关于棋盘变色的题目,可以考虑使用搜索来解决。对于POJ1753题目,可以使用广度优先搜索(BFS)来解决。 首先,对于每个格子,定义一个状态,0表示当前格子是白色,1表示当前格子是黑色。 然后,我们可以把棋盘抽象成一个长度为16的二进制数,将所有格子的状态按照从左往右,从上往下的顺序排列,就可以用一个16位的二进制数表示整个棋盘的状态。例如,一个棋盘状态为: 0101 1010 0101 1010 则按照从左往右,从上往下的顺序把所有格子的状态连接起来,即可得到该棋盘的状态为"0101101001011010"。 接着,我们可以使用队列来实现广度优先搜索。首先将初始状态加入队列中,然后对于队列中的每一个状态,我们都尝试将棋盘上的每个格子翻转一次,生成一个新状态,将新状态加入队列中。对于每一个新状态,我们也需要记录它是从哪个状态翻转得到的,以便在得到最终状态时能够输出路径。 在搜索过程中,我们需要维护每个状态离初始状态的步数,即将该状态转换为最终状态需要的最小步数。如果我们找到了最终状态,就可以输出答案,即最小步数。 代码实现:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lei2015_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值