CodeForces Round 230 Div2 D

35 篇文章 0 订阅
19 篇文章 0 订阅

一道简单DP

就汉诺塔,给出从 x 柱子 移动到 y 柱子的耗费,求在 n 个盘子的情况下,完成 汉诺塔最少需要多少耗费。

首先一个盘子的情况

dp[1][i][j]=min(cost[i][j],cost[i][6-i-j]+cost[6-i-j][j]);

就是直接转到目的地和从中间转一次的最小值

两个盘子的情况,假设把全部的从 1 移动到 3

第一种方式 1 2; 1 3; 2 3

第二种方式 1 3; 1 2; 3 1;2 3; 1 3

只有这两种方式,没有其他方式,

所以写dp取其中的较小的一种就可以了。


#include <stdio.h>
#include <queue>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 2222
#define P pair<int,int>
#define fst first
#define sec second
#define ll long long 

ll dp[100][4][4];

ll cost[5][5];



int main()
{
	for(int i=0;i<=100;i++)
		for(int j=0;j<4;j++)
			for(int k=0;k<4;k++)
				dp[i][j][k]=-1;

	for(int i=1;i<=3;i++)
		for(int j=1;j<=3;j++)
			cin>>cost[i][j];
	int n;
	cin>>n;
	for(int i=1;i<=3;i++)
		for(int j=1;j<=3;j++)
		{
			if(i==j)
				continue;
			dp[1][i][j]=min(cost[i][j],cost[i][6-i-j]+cost[6-i-j][j]);
		}
	for(int k=2;k<=n;k++)
	{
		for(int i=1;i<=3;i++)
			for(int j=1;j<=3;j++)
			{
				if(i==j)
					continue;
				int m=6-i-j;
				dp[k][i][j]=min(dp[k-1][i][m]+cost[i][j]+dp[k-1][m][j],2*dp[k-1][i][j]+cost[i][m]+dp[k-1][j][i]+cost[m][j]);
			}		
	}
	cout<<dp[n][1][3]<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值