一道简单DP
就汉诺塔,给出从 x 柱子 移动到 y 柱子的耗费,求在 n 个盘子的情况下,完成 汉诺塔最少需要多少耗费。
首先一个盘子的情况
dp[1][i][j]=min(cost[i][j],cost[i][6-i-j]+cost[6-i-j][j]);
就是直接转到目的地和从中间转一次的最小值
两个盘子的情况,假设把全部的从 1 移动到 3
第一种方式 1 2; 1 3; 2 3
第二种方式 1 3; 1 2; 3 1;2 3; 1 3
只有这两种方式,没有其他方式,
所以写dp取其中的较小的一种就可以了。
#include <stdio.h>
#include <queue>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 2222
#define P pair<int,int>
#define fst first
#define sec second
#define ll long long
ll dp[100][4][4];
ll cost[5][5];
int main()
{
for(int i=0;i<=100;i++)
for(int j=0;j<4;j++)
for(int k=0;k<4;k++)
dp[i][j][k]=-1;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
cin>>cost[i][j];
int n;
cin>>n;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
if(i==j)
continue;
dp[1][i][j]=min(cost[i][j],cost[i][6-i-j]+cost[6-i-j][j]);
}
for(int k=2;k<=n;k++)
{
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
if(i==j)
continue;
int m=6-i-j;
dp[k][i][j]=min(dp[k-1][i][m]+cost[i][j]+dp[k-1][m][j],2*dp[k-1][i][j]+cost[i][m]+dp[k-1][j][i]+cost[m][j]);
}
}
cout<<dp[n][1][3]<<endl;
}