HDU 2089 数位 dp 入门

35 篇文章 0 订阅
2 篇文章 0 订阅

可暴力,可dp。

参考资料:Click Me~~

第二个版本的代码参考资料:7k+ 的板子

第二个版本代码在下面

做这道题的时候有两个疑问

第一:既然在dp中 51 既可以看做 51 也可以看做 0051 或者 000051 ,那么51这个数字会不会计算多次。

第二:既然状态转移保证了数字的合法,在统计的时候是否还要继续判断。

首先 dp 的意义 dp[i][j] 表示 i 长度 开头为 j 的数字的数量

关于第一个疑问。在dp中 0051 当然是在dp[3][0] dp[4][0] .. 中各计算一次。

但是我们统计的时候只统计了一次。

统计是这样的,我们只统计比 n 小的数字,先找最高位比 n 小的数字,比如 n=160, 051 这个数字最高位就小于他了,我们统计了一次,当我们统计到第2位的时候,这个意义是在最高位相同的情况下,这一位比 160 小的数字, 这样,我们统计的就是 151 这个数字,而不是051了,当然,每个数字都只统计了一次。

第二:dp[i][j] 只保证 j 开头 长度为i 的数字合法,不保证长度比他大的依然合法。。当然要判断一下。

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define PII pair<int,int>
#define PDI pair<double,int>
#define PDD pair<double,double>
#define MII map<int,int>::iterator 
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ROOT 0,n-1,1
#define PB push_back
#define FOR(a,b,c) for(int a=b;a<c;a++)
#define MOD 10007
#define keyTree (ch[ ch[root][1] ][0])
#define MAX 111

int dp[MAX][MAX];


int solve(int a)
{
    int len=0;
    int num[20];
    MS(num,0);
    while(a)
    {
        num[++len]=a%10;
        a/=10;
    }
    int ans=0;
    for(int i=len;i;i--)
    {
        for(int j=0;j<num[i];j++)
        {
            if(!(num[i+1]==6&&j==2))
              ans+=dp[i][j];
        }
        if(num[i+1]==6&&num[i]==2)
            return ans;
        if(num[i]==4)
            return ans;
    }
    return ans;
}
int main()
{
    dp[0][0]=1;
    for(int i=1;i<=8;i++)
    {
        for(int j=0;j<=9;j++)// i wei kai tou 
        {
            for(int k=0;k<=9;k++)// i-1 wei kaitou
            {
                if(j!=4&&(!(j==6&&k==2)))
                    dp[i][j]+=dp[i-1][k];
            }
        }
    }    
    int l,r;
    while(cin>>l>>r&&l&&r)
    {
        cout<<solve(r+1)-solve(l)<<endl;
    }
    return 0;
}

这个代码统计的是 <= n 的数字

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <fstream>
#include <set>
#include <stack>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define WRITE freopen("acm.out","w",stdout)
#define ll long long
#define ull unsigned long long 
#define PII pair<int,int>
#define PDI pair<double,int>
#define PDD pair<double,double>
#define MII map<int,int>::iterator 
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ROOT 0,n-1,1
#define PB push_back
#define FOR(a,b,c) for(int a=b;a<c;a++)
#define MOD 10007
#define keyTree (ch[ ch[root][1] ][0])
#define MAX 111

int dp[MAX][MAX];
int digit[MAX];
int len;

// dfs 在当前位是第 i 位(权重)数字为 s 的时候比 digit 小的数字有多少
int dfs(int i,int s,bool e)// i 是当前位 s 是当前位数字  dp[i][s]=sigma(valid dp[i-1][0-9]) e 为前一位是否是上界
{
    if(i==0)
        return s==0;
    if(!e&&dp[i][s]!=-1)
        return dp[i][s];
    int u=e?digit[i-1]:9;
    int res=0;
    for(int j=0;j<=u;j++)
    {
        if(j!=4&&!(s==6&&j==2))
            res+=dfs(i-1,j,e&&j==u);
    }
    return e?res:dp[i][s]=res;
}

int cal(int n)
{
    len=0;
    MS(digit,0);
    while(n)
    {
        digit[++len]=n%10;
        n/=10;
    }
    return dfs(len+1,0,1);
}


int main()
{
    MS(dp,-1);
    int l,r;
    while(cin>>l>>r&&l&&r)
        cout<<cal(r)-cal(l-1)<<endl;
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值